DFTB*XT

open software package for quantum nanoscale modeling*

USER MANUAL
Version 1.03, Release 18.01.2020

“DFTB*XT is the core package of the TraNaS OpenSuite, tranas.org/opensuite

Contents

Preface

1 Introduction

2 Input for DFTB*XT

2.1 Maininput.ol e e e e e e
2.2 GEOMEITY .« . v v v v et e et e e e e e e e e e
2.2.1 Explicit geometry specification. L.
222 GenFormat{}o
223 xyzFormat{}
224 VaspFormat{} e
2.2.5 NoGeometry{} e
2.3 DIIVEr o e e e
2.3.1 SteepestDescent{}
2.3.2 ConjugateGradient{}
233 gDIIS{} o e
234 LBFGS{}
2.3.5 SecondDerivatives{} o
2.3.6 VelocityVerlet{}
2.3.7 Socket{} e
2.4 Hamiltonian e e e e e e e e e
241 MIXEr oo e e e e e e e
2.4.2 SpinPolarisation
243 SpinOrbito e
244 Solver e e e
245 Filling e e e
2.4.6 SlaterKosterFiles
2477 KPointsAndWeights Lo
2.4.8 OrbitalPotential
249 ElectricField
2.4.10 Dispersion e e e e e
24.11 DFTB3 e e e e
2.4.12 Implicit Solvation Model L.
2.4.13 Halogen corrections v v v i i e e
2.4.14 Hydrogen corrections v v vt vt e e
2.4.15 RangeSeparatedo
2.4.16 OnsSite COITECtIONS . . + v v v v v v v e e e e e e e e e e e e e
2.4.17 Differentiation e
2.4.18 ForceEvaluation

2.5
2.6
2.7

2.8

2.10

Output of DFTB*XT
bandout L.

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10

3.11
3.12

Transport calculations
Definition of the geometry
4.1.1 Rules to build a valid input geometry

4.1

4.2

4.3
4.4
4.5
4.6
4.7

Options
Analysis oL

ExcitedState

detailed.out

Transport{}

42.1 Device{}

42.2 Contact{}
4.2.3 Task = ContactHamiltonian{}
424 Task = UploadContacts{}
GreensFunction
Solver = TransportOnly
Contour integration
Spin-polarised transport
Poisson solver
4.7.1 Boundary Conditions

2.7.1 Casida
2.7.2 PP-RPA
REKS
2.8.1 SSR22
2.9 ParserOptions
Parallel

resultstag oL
hamsqrN.dat, oversqr.dat
hamrealN.dat, overreal.dat
eigenvec.out, eigenvec.bin
charges.bin / charges.dat
mdout
Electrostatic potential data
Excited state results files
3.10.1 ARPACK.DAT
3.10.2 COEF.DAT
3.10.3 EXC.DAT
3.10.4 SPX.DAT
3.10.5 TDP.DAT
3.10.6 TRA.DAT
3.10.7 TEST_ARPACK.DAT
3.10.8 XCH.DAT
3.10.9 XplusY.DAT
3.10.10 XREST.DAT
ppRPA_ener.DAT
REKS results files
3.12.1 tdp.dat
3.12.2 relaxed_charge.dat

CONTENTS

CONTENTS

2 © a =

)

4.7.2 Electrostatic Gates
4.8 Model Hamiltonians L e
4.9 Quasi-elasticdephasing

49.1 BuettikerProbes{}

49.2 VibronicElastic{}
4.10 Application to STM SPectrosCoOpPY« v v v v v v v e e e e
4.11 Parallelisations
412 Analysis{}
4.13 TransmissionAndDos{}
4.14 Setting electronic temperature u . e e e
4.15 Troubleshooting transport
4.16 Transport Tools e e

MODES

5.1 Inputfor MODES i e e e e
5.1.1 Hessian{} e
5.1.2 DisplayModes{}

WAVEPLOT

6.1 Inputfor WAVEPLOT o ittt ittt et e e e
6.1.1 Options e e e e
6.1.2 Basis
6.1.3 ParserOptions e

SETUPGEOM

7.1 Input for SETUPGEOM v v v it it et e e e e e e e e e e
7.1.1 Transport{} e
7.1.2 Codeoutput

DFTB* API
8.1 Buildingthelibrary
8.2 General guidelines L

The HSD format

A.1 Scalarsand listofscalars
A.2 Methods and property lists L
A3 Modifiers e e e
A4 Fileinclusion e
A5 Processing e e e
A.6 Extended format.

Unit modifiers

Description of the gen format

Atomic spin constants
Slater-Kirkwood dispersion constants
DftD3 dispersion constants

DftD4 dispersion constants

115
115
116
116

119
119
120
123
125

127
127
127
129

131
131
131

133
134
135
136
136
137
137

141

143

145

147

149

151

6 CONTENTS

H Atomic onsite constants
I Hartree Hubbard constants for pp-RPA calculations

J Description of restart files
J.0.1 charges.bin/charges.dat
J.0.2 contact.bin/contact.dat

K Publications to cite
Bibliography

Index

153

155

157
157
158

159

165

166

Preface

DFTB*XT is a general open source software package for

* fast atomistic electronic structure and molecular dynamics simulations
* model and atomistic quantum transport at nanoscale
* many-body nonequilibrium phenomena

* material and device modeling

DFTB™*XT is an extended version of the DFTB™* code.

DFTB*XT package [1] is based on the DFTB* [2, 3] source code. Additionally, it suggests a
number of new features. The extended functionality of DFTB*XT is mainly focused on many-
body quantum transport and applications in nanoscience, material and device modeling.

In the versions 1.01 and 1.02 we first include the following new features.

* Model Hamiltonians for transport calculations

We introduced the possibility to read model Hamiltonians from external data files and use it
with or without a geometry structure. This is especially important for many-body quantum
transport problems. See Sec. 4.8.

* Elastic dephasing

Two models of elastic dephasing ("Biittiker probe" and "vibronic dephasing") can be used
now to include the dephasing and dissipation beyond the coherent Green function method.
Thus, we made a new step towards realistic material and device modeling. See Sec.4.9.

* Application to STM spectroscopy

We added new options to simplify and make faster the calculation of currents for systems with
changeable geometry (like the STM setup). We also supply the python scripts for modeling
of the scanning process over tip position and voltage. See Sec. 4.10.

CONTENTS

Chapter 1

Introduction

The code DFTB™ is the Fortran 2003 successor of the old DFTB code, which implements the
density functional based tight binding approach [4]. The code has been completely rewritten from

scratch and extended with various features. The most recent features of the code are described in
Ref. [2].

The main features of DFTB™ are:

* Non-scc and scc calculations (with an expanded range of SCC accelerators)

— Cluster/molecular systems
— Periodic systems (arbitrary k-point sampling, band structure calculations, etc.)

— Open boundary conditions (wire and semi-infinite contacts)
* I-shell resolved calculations possible
* Spin polarised calculations (both collinear and non-collinear spin)
* Geometry and lattice optimisation
* Geometry optimisation with constraints (in Xxyz-coordinates)
* Molecular dynamics (NVE, NPH, NVT and NPT ensembles as well as metadynamics)
* Numerical vibrational mode calculations
* Finite temperature calculations
* Dispersion corrections (van der Waals interactions)
* Ability to treat f-electrons
* Linear response excited state calculations for cluster/molecular systems

* Geometry optimisation and molecular dynamics in singlet and triplet excited states of spin-
free molecules

* LDA+U/pSIC extensions
* L-S coupling

* 3rd order on-site corrections (improved H-bonding)

9

10

CHAPTER 1. INTRODUCTION

Long range hybrid corrections

REKS calculations for a strongly correlated system

QM/MM coupling with external point charges (smoothing possible)

GPU accelleration and OpenMP and MPI parallelisation with a range of electronic solvers

Electronic transport calculations (non-equilibrium Green function methodology, transmission
calculations)

More general electrostatic boundary conditions via a Poisson equation electrostatic solver
Automatic code validation (autotest system)

New user friendly, extensible input format (HSD)

Dynamic memory allocation

Additional tool for generating cube files for charge distribution, molecular orbitals, etc.
(Waveplot)

Excitation energies for cluster/molecular systems using the particle-particle Random Phase
Approximation.

Chapter 2

Input for DFTB*XT

DFTB™ can read the Human-friendly Structured Data format (HSD). If you are not familiar with
the HSD format, a detailed description is given in appendix A. The input file for DFTB* must
be named dftb _in.hsd and must be present in the working directory. After processing the input,
DFTB™ creates a file of the parsed input called dftb pin.hsd. This contains the user input as well
as default values for unspecified options. The file also contains the version number of the current
input parser. You should always keep this file, since if you want to exactly repeat your calculation
with a later version of DFTB?, it is recommended to use this file instead of the original input.
(You must of course rename dftb _ pin.hsd into dftb _in.hsd.) This guarantees that you will obtain
the same results, even if the defaults for some non specified options have been changed in the
meanwhile (as dftb pin.hsd stores the original choice).

The following sections list properties and options that can be set in DFTB* input. The first column
of each of the tables of options specifies the name of a property. The second column indicates
the type of the expected value for that property. The letters “1”, “i”, “r”, “s”, “p”, “m” stand for
logical, integer, real, string, property list and method type, respectively. An optional prefixing
number specifies how often (if more than once) this type must occur. An appended “+” indicates
arbitrary occurrence greater than zero, while “*” allows also for zero occurrence. Alternative types

are separated by “I”. Parentheses serve only to delimit groups of settings.

Sometimes a property is only interpreted on meeting some condition(s). If this is the case, the the
third column gives details of the requirement(s). The fourth column contains the default value for
the property. If no default value is specified (“-”), the user is required to assign a value to that
property. The description of the properties immediately follows the table. If there is also a more
detailed description available for a given keyword somewhere else, the appropriate page number

appears in the last column.

Some properties are allowed to carry a modifier to alter the provided value (e.g. converting between
units). The possible modifiers are listed between brackets ([]) in the detailed description of the
property. If the modifier is a conversion factor for a physical unit, only the unit type is indicated
(length, energy, force, time, etc.). A list of the allowed physical units can be found in appendix B.

2.1 Main input

The input file for DFTB™* (dftb _in.hsd) must contain the following property definitions:

11

12 CHAPTER 2. INPUT FOR DFTB*XT

Name Type Condition Default Page
Geometry plm - 12
Hamiltonian m - 27

Additionally optional blocks of definitions may be present:

Name Type Condition Default Page
Driver m {} 15
Options p {} 68
Analysis p {3 69
ExcitedState p {} 73
REKS p {} 76
ParserOptions p {} 79
Parallel p {} 79

Geometry Specifies the geometry for the system to be calculated. See p. 12.
Hamiltonian Configures the Hamiltonian and its options. See p. 27.

Driver Specifies a geometry driver for your system. See p. 15.

Options Various global options for the run. See p. 68.

Analysis Post-run analysis and properties options. See p. 69.

ExcitedState Calculations in excited state of the system. See p. 73.

REKS Calculations in ensemble DFT for a strongly correlated system. See p. 76.
ParserOptions Various options affecting the parser only. See p. 79.

Parallel Options affecting the MPI-parallel execution. See p. 79.

2.2 Geometry

The geometry can be specified either directly by passing the appropriate list of properties or by using
the GenFormat{} method. For molecular input the xyzFormat{} is supported as well. For periodic
input the VaspFormat{} supports reading POSCAR and CONTCAR files. It is also possible to
make model calculations without geometry with NoGeometry{} option.

2.2.1 Explicit geometry specification

If the geometry is being specified explicitly, the following properties can be set:

Periodic 1 No
LatticeVectors Or Periodic = Yes -
TypeNames s+ -
TypesAndCoordinates (1i3r)+ -

Periodic Specifies if the system is periodic in all 3 dimensions or is to be treated as a cluster. If set
to Yes, property LatticeVectors{} must be also specified.

2.2. GEOMETRY 13

LatticeVectors [length] The x, y and z components of the three lattice vectors if the system is
periodic.

TypeNames List of strings with the names of the elements, which appear in your geometry.

TypesAndCoordinates [relative|length] For every atom the index of its type in the TypeNames
list and its coordinates. If for a periodic system (Periodic = Yes) the modifier relative is
specified, the coordinates are interpreted in the coordinate system of the lattice vectors.

Example: Geometry of GaAs:

Geometry = {

TypeNames = { "Ga" "As" }

TypesAndCoordinates [Angstrom| = {
1 0.000000 0.000000 0.000000
2 1.356773 1.356773 1.356773

}

Periodic = Yes

LatticeVectors [Angstrom]| = {
2.713546 2.713546 0.
0. 2.713546 2.713546
2.713546 0. 2.713546

}
}

2.2.2 GenFormat{}

You can use the generic format to specify the geometry (see appendix C). The geometry specifica-
tion for GaAs would be the following:

Geometry = GenFormat {
2'S
Ga As
11 0.000000 0.000000 0.000000
22 1356773 1.356773 1.356773
0.000000 0.000000 0.000000
2.713546 2.713546 0.
0. 2.713546 2.713546
2.713546 0. 2.713546

}

It is also possible to include the gen-formatted geometry from a file:

Geometry = GenFormat {
<<< "geometry.gen"

}

2.2.3 xyzFormat{}

You can also use the xyz format to specify molecular geometries. The geometry specification for a
caffeine molecule would be the following:

14 CHAPTER 2. INPUT FOR DFTB*XT

Geometry = xyzFormat {

24

caffeine CBH10N402

1.07317 0.04885 -0.07573
2.51365 0.01256 -0.07580
3.35199 1.09592 -0.07533
4.61898 0.73028 -0.07549
4.57907 -0.63144 -0.07531

3.30131 -1.10256 -0.07524
2.98068 -2.48687 -0.07377
1.82530 -2.90038 -0.07577

4.11440 -3.30433 -0.06936
5.45174 -2.85618 -0.07235
6.38934 -3.65965 -0.07232
5.66240 -1.47682 -0.07487
7.00947 -0.93648 -0.07524
3.92063 -4.74093 -0.06158
0.73398 1.08786 -0.07503
0.71239 -0.45698 0.82335

0.71240 -0.45580 -0.97549
2.99301 2.11762 -0.07478
7.76531 -1.72634 -0.07591
7.14864 -0.32182 0.81969
7.14802 -0.32076 -0.96953

2.86501 -5.02316 -0.05833
4.40233 -5.15920 0.82837
4.40017 -5.16929 -0.94780

YT IIIIIIIITIITOOZ00Z20000Z20Z2O0

It is also possible to include the xyz-formatted geometry from a file:

Geometry = xyzFormat {
<<< "geometry.xyz"

}

2.2.4 VaspFormat{}

You can also use Vasp’s POSCAR or CONTCAR format to specify periodic geometries. The ge-
ometry specification for a molecular ammonia crystal would be the following:

Geometry = VaspFormat {

H N

1.00000000000000

5.01336000000000 0.00000000000000 0.00000000000000
0.00000000000000 5.01336000000000 0.00000000000000
0.00000000000000 0.00000000000000 5.01336000000000
12 4

Cartesian

2.19855889440000 1.76390058240000 0.88014548160000

https://www.vasp.at/wiki/index.php/POSCAR
https://www.vasp.at/wiki/index.php/CONTCAR

2.3. DRIVER

}

It is also possible to include the POSCAR/CONTCAR formatted geometry from a file:

1.76390058240000
0.88014548160000
4.84115108400000
4.35630903840000
3.51957925440000
4.08403345680000
4.93981400880000
3.63248012160000
2.49981169680000
1.15357413600000
1.61941554720000
1.37461317840000
3.99815460000000
4.46364507600000
1.99105592400000

0.88014548160000
2.19855889440000
1.61941554720000
2.49981169680000
1.15357413600000
3.51957925440000
4.84115108400000
4.35630903840000
3.63248012160000
4.08403345680000
4.93981400880000
1.37461317840000
1.99105592400000
3.99815460000000
4.46364507600000

Geometry = VaspFormat {

}

2.2.5 NoGeometry{}

<<< "POSCAR"

The NoGeometry{} option is set by

Geometry = NoGeometry{}

it is used for model calculations without geometry, in this case the Hamiltonian is red from file. See

Sec. 4.8.

2.3 Driver

2.19855889440000
1.76390058240000
4.93981400880000
3.63248012160000
4.08403345680000
1.15357413600000
1.61941554720000
2.49981169680000
4.35630903840000
3.51957925440000
4.84115108400000
1.37461317840000
4.46364507600000
1.99105592400000
3.99815460000000

15

The driver is responsible for changing the geometry of the input structure during the calculation.
Currently the following methods are available:

{} Static calculation with the input geometry.

SteepestDescent{} Geometry optimisation by moving atoms along the acting forces. See p. 16.
ConjugateGradient{} Geometry optimisation using the conjugate gradient algorithm. See p. 18.
gDIIS{} Geometry optimisation using the modified gDIIS method. See p. 18.

LBFGS{} Geometry optimisation using the LBFGS algorithm. See p. 19.

16 CHAPTER 2. INPUT FOR DFTB*XT

SecondDerivatives{} Calculation of the second derivatives of the energy (the Hessian). See
p. 19.

VelocityVerlet{} Molecular dynamics with the velocity Verlet algorithm. See p. 20.

Socket{} Hands over control to an external program via a socket interface. See p. 26.

2.3.1 SteepestDescent{}

MovedAtoms (ils)+ 1:-1
MaxForceComponent r le-4
MaxSteps i 200
StepSize r 100.0
OutputPrefix S "geo end"
AppendGeometries 1 No
Constraints (1i3r)* LatticeOpt = No {}
LatticeOpt 1 Periodic = Yes No
FixAngles 1 Periodic = Yes, LatticeOpt = Yes No
FixLengths 31 FixAngles = Yes No No No
Isotropic 1 Periodic = Yes, LatticeOpt = Yes No
Pressure r Periodic = Yes, LatticeOpt = Yes 0.0
MaxAtomStep r MovedAtoms # None{} 0.2
MaxLatticeStep r Periodic = Yes, LatticeOpt = Yes 0.2
ConvergentForcesOnly 1 SCC = Yes Yes

MovedAtoms Indices of the atoms which should be moved. The atoms can be specified as a
mixture of a list of atoms, ranges of atoms and/or the species of atoms. Index ranges are
specified as start:end (without white space as one word!), which inclusively selects all atoms
between start and end.

MovedAtoms = 1:6
equivalent to MovedAtoms = { 123456}

Negative indices can be used to count backwards from the last atom (-1 = last atom, -2 =
penultimate atom, etc.):

MovedAtoms = 1:-1 # Move all atoms including the last

Species names can be used to select all atoms belonging to a given species:
MovedAtoms = Ga # select all Ga atoms

Various specifiers can be combined together:

Move atoms 1, 2, 3, all Ga atoms, and the last two atoms.
MovedAtoms = 1:3 Ga -2:-1

MaxForceComponent [force] Optimisation is stopped, if the force component with the maximal
absolute value goes below this threshold.

2.3. DRIVER 17

MaxSteps Maximum number of steps after which the optimisation should stop (unless already
stopped by achieving convergence). Setting this value as -1 runs a huge() number of itera-
tions.

StepSize [time] Step size (8t) along the forces. The displacement Sx; along the i coordinate is
given for each atom as dx; = 2%5’2’ where f; is the appropriate force component and m is the
mass of the atom.

OutputPrefix Prefix of the geometry files containing the final structure.

AppendGeometries If set to Yes, the geometry file in the XYZ-format will contain all the geome-
tries obtained during the optimisation (instead of containing only the last geometry).

Constraints Specifies geometry constraints. For every constraint the serial number of the atom is
expected followed by the x, y, z components of a constraint vector. The specified atom is not
allowed to move along the constraint vector. If two constraints are defined for the same atom,
the atom will only by able to move normal to the the plane containing the two constraining
vectors.

Example:

Constraints = {
Atom one can only move along the z-axis
1 1.0 0.0 0.0
1 0.0 1.0 0.0

}

LatticeOpt Allow the lattice vectors to change during optimisation. MovedAtoms can be option-
ally used with lattice optimisation if the atomic coordinates are to be co-optimised with the
lattice.!

FixAngles If optimising the lattice, allow only the lengths of lattice vectors to vary, not the angles
between them. For example if your lattice is orthorhombic, this option will maintain that
symmetry during optimisation.

FixLengths If optimising the lattice with FixAngles = Yes, allow only the lengths of the specified
lattice vectors to vary.

Example:

Driver = ConjugateGradient {
LatticeOpt = Yes
FixAngles = Yes # Fix angles between lattice vectors
FixLengths = {Yes Yes No} # Allow only lat. vector 3 to change length

}

Isotropic If optimising the lattice, allow only uniform scaling of the unit cell. This option is
incompatible with FixAngles.

Pressure [pressure] If optimising the lattice, set the external pressure, leading to a Gibbs free
energy of the form G = E 4+ PV — T'S being printed as well (the included entropy term is only
the contribution from the electrons, therefore this is not the full free energy).

MaxAtomStep Sets the maximum possible line search step size for atomic relaxation.

IThis is functional but not very efficient at the moment.

18

MaxLatticeStep Sets the maximum possible line search step size for lattice optimisation. For
FixAngles or Isotropic calculations this is as a fraction of the lattice vectors or the volume

respectively.

ConvergentForcesOnly If using an SCC calculation, this option controls whether the geometry
optimisation will prematurely stop (= Yes) if the SCC cycle does not converge at any geomet-

ric step.

2.3.2 ConjugateGradient{}

CHAPTER 2. INPUT FOR DFTB*XT

MovedAtoms (ils)+ 1:-1
MaxForceComponent r le-4
MaxSteps i 200
OutputPrefix S "geo end"
AppendGeometries 1 No
Constraints (1i3r)* {}
LatticeOpt 1 Periodic = Yes No
FixAngles 1 Periodic = Yes, LatticeOpt = Yes No
Isotropic 1 Periodic = Yes, LatticeOpt = Yes No
Pressure T Periodic = Yes 0.0
MaxAtomStep r MovedAtoms # None{} 0.2
MaxLatticeStep r Periodic = Yes, LatticeOpt = Yes 0.2
ConvergentForcesOnly 1 SCC = Yes Yes

See previous subsection for the description of the properties.

2.3.3 gDIIS{}
Alpha r 0.1
Generations i 8
MovedAtoms (ils)+ 1:-1
MaxForceComponent T le-4
MaxSteps i 200
OutputPrefix S "geo end"
AppendGeometries 1 No
Constraints (1i3r)* {}
LatticeOpt 1 Periodic = Yes No
FixAngles 1 Periodic = Yes, LatticeOpt = Yes No
Isotropic | Periodic = Yes, LatticeOpt = Yes No
Pressure r Periodic = Yes 0.0
MaxLatticeStep r Periodic = Yes, LatticeOpt = Yes 0.2
ConvergentForcesOnly 1 SCC = Yes Yes

Specific properties for this method are:

Alpha Initial scaling parameter to prevent the iterative space becoming exhausted (this is dynami-

cally adjusted during the run).

Generations Number of generations to consider for the mixing.

2.3. DRIVER 19

See previous subsection for the description of the other properties.”

234 LBFGS{}

Memory i 20
MovedAtoms (ils)+ 1:-1
MaxForceComponent T le-4
MaxSteps i 200
OutputPrefix S "geo end"
AppendGeometries 1 No
Constraints (1i3r)* {}
LatticeOpt 1 Periodic = Yes No
FixAngles 1 Periodic = Yes, LatticeOpt = Yes No
Isotropic 1 Periodic = Yes, LatticeOpt = Yes No
Pressure r Periodic = Yes 0.0
MaxLatticeStep r Periodic = Yes, LatticeOpt = Yes 0.2
ConvergentForcesOnly 1 SCC = Yes Yes

Specific properties for this method are:

Memory Number of last steps which are saved and used to calculate the next step via the LBFGS
algorithm. The literature recommends that Memory should between 3 and 20 [6].

2.3.5 SecondDerivatives{}

Calculates the second derivatives of the energy (currently only using a numerical differentiation of
the forces). The derivatives matrix is written out for the i, j and k directions of atoms 1...n as

J’E J’E J9*E J9*E J*E 0J’E J’E
&xil&xil 8xj18xl~1 kalaxil 8)6,'28)6,‘1 8xj28x,~1 8xk28xl-1 o axknéix;m

into hessian.out

Note: for supercell calculations, the derivatives are obtained at the q = 0 point, irrespective of the
k-point sampling used.

Important: In order to get accurate results for the second derivatives (and the resulting frequen-
cies) you must set a smaller self-consistent tolerance than the default value in the Hamiltonian{}
section. We suggest SCCTolerance = 1e-7 or better. A less accurate tolerance can yield nonphysical
vibrational frequencies.

Atoms i+lm 1:-1
Delta r le-4

Atoms Index of the atoms for which to calculate the second derivatives. The atoms can be specified
via indices, index ranges and species. (See MovedAtoms in section 2.3.1.)

Delta Step size for numerical differentiation of forces to get the second derivatives of the energy
with respect to atomic coordinates.

2This approach is distinct from section 2.4.1, but uses a related algorithm based on Ref. [5] and comments from
P.R.Briddon.

20 CHAPTER 2. INPUT FOR DFTB*XT

2.3.6 VelocityVerlet{}

The code propagates atomic motion using velocity Verlet dynamics with optional thermostats or
barostats to control the temperature and/or pressure. Information is printed out during the simulation
every MDRestartFrequency steps, and logged in the file md.out (see appendix 3.8).

MovedAtoms (ils)+ 1:-1

Steps i -

TimeStep r -

KeepStationary 1 Yes

Thermostat m - 21
OutputPrefix S "geo end"
MDRestartFrequency i 1

Velocities (3r)* -

Barostat m Periodic = Yes - 23
ConvergentForcesOnly 1 SCC = Yes Yes

Xlbomd p XlbomdFast not set 24
XlbomdFast p Xlbomd not set 24
Masses p 26
Plumed 1 No

MovedAtoms List of atoms to move during the MD. (See more detailed description on page 16.)

Steps Number of MD steps to perform. In the case of a thermostat using a TemperatureProfile{}
the number of steps is calculated from the profile.

KeepStationary Remove translational motion from the system.
TimeStep [time] Time interval between two MD steps.

Thermostat Thermostating method for the MD simulation. See p. 21.
OutputPrefix Prefix of the geometry files containing the final structure.

MDRestartFrequency Interval that the current geometry and velocities are written to the XYZ
format geometry file and md.out (see section 3.8). In the case of SCC MD runs, the charge
restart information is also written at this interval overriding RestartFrequency (see section 2.5).

Velocities [velocity] Specified atomic velocities for all the atoms of the given structure (including
“velocities” for any stationary atoms, which are silently ignored). This option can be used
to restart an MD run, but make sure the geometry is consistent with the specified velocities.
The easiest way to do this is to copy both from the same iteration of the XYZ file produced
in the previous run (Note: the velocities printed in the XYZ files are specified in A/ps, SO
this should be set in the input). If restarting an SCC MD run, we strongly suggest you use
ReadlnitialCharges, and in particular read charges for the geometry which you use to restart
(iterations at which charges are written to disc are marked in the XYZ file, with the most
recent being present in charges.bin or charges.dat depending on the option WriteChargesAs-
Text).

Barostat Berendsen method barostat for the MD simulation. See p. 23.

ConvergentForcesOnly If using an SCC calculation, this option controls whether the molecular
dynamics will prematurely stop (= Yes) if the SCC cycle does not converge at any geometric

2.3. DRIVER 21

step. If the option is set to False, forces will be calculated using the non-converged charges
and the molecular dynamics continues. In this case you should consider using ForceEvalu-
ation = 'Dynamics’ (or ForceEvaluation = 'DynamicsT0’) in the DFTB block as it gives
more accurate forces for non-converged charges.

Xlbomd If present, extended Lagrangian type molecular dynamics is applied to speed up the sim-
ulation. For further options within the XIbomd block see p. 24.

Masses If present, over-ride the atomic masses from the Slater-Koster files. See p. 26

Plumed Whether Plumed should be invoked in order to modify the forces and to drive a meta-
dynamics. The parameters of the meta-dynamics must be stored in the file plumed.dat in the
current directory. The file must be formatted according to Plumed’s own format. (Note: This
option requires a DFTB* binary built with Plumed support.)

Thermostat

None{} No thermostating during the run, only the initial velocities are set according to either a
given temperature or velocities, hence an NVE ensemble should be achieved for a reasonable time
step.

] Initial Temperature r -

InitialTemperature [energy] Starting velocities for the MD will be created according the Max-
well-Boltzmann distribution at the specified temperature. This is redundant in the case of
specified initial velocities.

Andersen{} Andersen thermostat [7] sampling an NVT ensemble.

Note: Andersen thermostating has a reputation for suppressing diffusion and also prevents accu-
mulation of data for dynamical properties.

Temperature rim -
ReselectProbability r
ReselectIndividually 1 -
AdaptFillingTemp 1 No

Temperature [energy| Target temperature of the thermostat. It can be either a real value, spec-
ifying a constant temperature through the entire run or the TemperatureProfile{} method
specifying a changing temperature. (See p. 23.)

ReselectProbability Probability for re-selecting velocities from the Maxwell-Boltzmann distri-
bution.

ReselectIndividually If Yes, each atomic velocity is re-selected individually with the specified
probability. Otherwise all velocities are re-selected simultaneously with the specified proba-
bility.

AdaptFillingTemp If Yes, the temperature of the electron filling is always set to the current tem-
perature of the thermostat. (The appropriate tag for the temperature of the electron filling is
ignored.)

22 CHAPTER 2. INPUT FOR DFTB*XT

Berendsen{} Berendsen thermostat [8] samples something like an NVT ensemble (but without
the correct canonical fluctuations, be aware of the “flying ice cube” problem before using this
thermostat [9]).

Temperature rim -
CouplingStrength r Timescale not set -
Timescale r CouplingStrength not set -
AdaptFillingTemp 1 No

Temperature [energy] Target temperature of the thermostat. It can be either a real value specifying
a constant temperature through the entire run or the TemperatureProfile{} method specifying
a changing temperature. (See p. 23.)

CouplingStrength Dimensionless coupling strength for the thermostat (given as Ar/1; in the orig-
inal paper where At is the MD time step). Alternatively Timescale[time] can be set directly
as the characteristic length of time to damp the temperature towards the target temperature.
The CouplingStrength and Timescale options are mutually exclusive.

AdaptFillingTemp If Yes, the temperature of the electron filling is always set to the current tem-

perature of the thermostat. (The appropriate tag for the temperature of the electron filling is
ignored.)

NoseHoover{} Nosé-Hoover chain thermostat [10] sampling an NVT ensemble, currently with
the chain coupled to all of the atoms in the system.

Temperature rim -
CouplingStrength
ChainLength
Order

r
i
i
IntegratorSteps i
m
1

_= W w !

Restart
AdaptFillingTemp

No

Temperature [energy] Target temperature of the thermostat. It can be either a real value, spec-
ifying a constant temperature through the entire run or the TemperatureProfile{} method
specifying a changing temperature. (See p. 23, but note that profiles are not well tested with
this thermostat yet.)

CouplingStrength [Frequency] Frequency of oscillation of the thermostating particles (see sec-
tion 2.5 of Ref. [10]). This is typically related to the highest vibrational mode frequency of
the system.

ChainLength Number of particles in the thermostat chain.
Order and IntegratorSteps See section 4.3 of Ref. [10]).

Restart Specifies the internal state of the thermostat chain, using three keywords (all three must
be present): x{}, v{} and g{} containing the internal chain positions, velocities and forces
respectively (these are provided in md.out). See also section 2.3.6.

AdaptFillingTemp If Yes, the temperature of the electron filling is always set to the current tem-
perature of the thermostat. (The appropriate tag for the temperature of the electron filling is
ignored.)

2.3. DRIVER 23

TemperatureProfile{} Specifies a temperature profile during molecular dynamics. It takes as
argument one or more lines containing the type of the annealing (string), its duration (integer), and
the target temperature (real), which should be achieved at the end of the given period. For example:

Temperature [Kelvin] = TemperatureProfile { # Temperatures in K
constant 1 10.0 # Setting T=10 K for the 0th MD-step
linear 500 600.0 # Linearly rising T in 500 steps up to T=600 K
constant 2000 600.0 +# Constant T through 2000 steps
exponential 500 10.0 # Exponential decreasing in 500 steps to T=10 K

}

The annealing method can be constant, linear or exponential, with the duration of each stage of
the anneal specified in steps of the driver containing the thermostat. The starting temperature for
each annealing period is the final target temperature of the previous period, with the last step of
each stage being at the target temperature. Since the initial stage in the temperature profile has no
previous step, the default starting temperature is set to 0. In order to start the calculation from a
finite temperature for the first annealing period, a constant profile temperature stage with a duration
of one (or more) step(s) should be specified as the first step (see the example). The temperatures of
the stages are specified in atomic units, unless the Temperature keyword carries a modifier, as in
the example above.

Barostat

Berendsen barostat [8] samples something like an NPH ensemble for MD (but without the correct
fluctuations). Options are provided for either isotropic or cell shape changing pressure control. This
can also be used in tandem with a thermostat (p. 21) for the NPT ensemble. If the barostat is used,
a partial Gibbs free energy is reported in code output, of the form

G=E+PV— TSelectronic~

This does not include structural entropy, only any electronic entropy. For barostated constant energy
simulations (no thermostat in use), the conserved quantity is the sum of the kinetic and Gibbs partial
energies.

Pressure r
Coupling r Timescale not set -
Timescale r Coupling not set -
Isotropic 1 Yes

Pressure [pressure] Sets the external target pressure.

Coupling Coupling strength for the barostat (given as BAf/7, in the original paper where At is
the MD time step and 8 the compressibility, so the coupling is technically dimensioned as
reciprocal pressure, but this is usually ignored). Alternatively Timescale[rime| can be set
directly (B/7,) as the characteristic length of time to damp the pressure. Typically, B is
assumed to be either the experimental value or ~ 1, and Ref. [8] chooses the time scale to be
around 10-100 fs. The Coupling and Timescale options are mutually exclusive.

Isotropic Should isotropic scaling of the unit cell be used, or can the cell shape vary? There is a
slight inconsistency between the standard forms of these scalings in the literature, which is
reproduced here, in brief the isotropic case scales the cell volume by a factor proportional to
the differences in the instantaneous and expected pressures (i.e., the cube of the cell vectors),
while the anisotropic case changes the cell vectors proportional to the difference instead.

24 CHAPTER 2. INPUT FOR DFTB*XT

Extended Lagrangian Born-Oppenheimer dynamics

For several systems Born-Oppenheimer molecular dynamics simulations can be significantly sped
up by using the extended Lagrangian formalism described in Ref. [11]. The XLBOMD integrator
can be used in two different modes:

* Conventional XLBOMD scheme (Xlbomd): The extended Lagrangian is used to predict the
input charge distribution for the next time step, instead of taking charges that were converged
for the geometry in the previous time step. The predicted starting charges should then require
fewer SCC iterations to converge.

 Fast XLBOMD scheme, XIbomdFast (one diagonalisation per time step): The extended La-
grangian is used to predict the population for each time step. This predicted population is
then used to build the Hamiltonian, but in contrast to the conventional XLBOMD scheme,
there is no self consistent cycle — the forces are calculated immediately after the diagonali-
sation of the first Hamiltonian. The fast XLBOMD method usually only works for systems
without SCC instabilities (e.g. wider gap insulators or molecules without degenerate states).
See Ref. [11] for details.

The extended Lagrangian dynamics can be activated by specifying either the Xlbomd or the
XlbomdFast option block. Both methods offer the following options:

IntegrationSteps i 5
PreSteps i 0

IntegrationSteps Number of time steps used for determining the population for the next time
step. Currently, only integration schemes for 5, 6 or 7 steps are implemented.

PreSteps Number of molecular dynamics time steps before the XLBOMD integration becomes
activated.

Note: At the step where the XLBOMD integrator becomes active, it is initialised with results
of several subsequent converged MD steps, so a further IntegrationSteps + 1 steps will be car-
ried out before the extended Lagrangian dynamics starts to predict the charges and accelerate
the calculation.

The conventional Xlbomd block has the following specific options in addition to the common XL-
BOMD settings above:

MinScclterations i 1
MaxScclterations i 200
SccTolerance r le-5

MinScclterations Minimum number of SCC iterations to perform at each time step during the
extended Lagrangian dynamics.

MaxScclterations Maximum number of SCC iterations to perform at each step in the extended
Lagrangian dynamics. If this number of SCC iterations have been reached the forces will be
calculated and the MD advances to the next time step. See the note in section 2.4.7 regarding
non-convergent k-point sampling.

2.3. DRIVER 25

SccTolerance SCC convergence tolerance during the extended Lagrangian dynamics. Once this
tolerance has been achieved the SCC cycle will stop and the forces will be calculated. You can
use this parameter to override the SccTolerance parameter in the DFTB block for time steps
where the extended Lagrangian integrator is active (This way, you can calculate populations
with tight SCC tolerance when initialising the XLBOMD integrator, then use a less strict SCC
tolerance once the integrator is active).

The XlbomdFast block has the following specific options in addition to the common XLBOMD
settings above:

TransientSteps i 10
Scale r 1.0

TransientSteps Enables a smoother transition between Born-Oppenheimer and extended Lagrangian
dynamics by carrying out intermediate additional steps with full SCC convergence, during
which the converged population and the one predicted by the extended Lagrangian integrator
are averaged.

Scale Scaling factor for the predicted charge densities € (0, 1]. The optimal value is system de-
pendent. One should take the highest possible value that still produces stable dynamics (good
conservation of energy).

Example for conventional XLBOMD:

Xlbomd {
IntegrationSteps = 6
MinScclterations = 2
MaxScclterations = 200
SccTolerance = 1e-6

}

Fast (SCC-free) XLBOMD with one diagonalisation per time step:

XlbomdFast {
PreSteps = 5
TransientSteps = 10
IntegrationSteps = 5
Scale = 0.5

}

Points to be aware of:

* The extended Lagrangian (especially in the fast mode) needs special force evaluation giving
more accurate forces for non-convergent charges. Therefore you must set the ForceEvaluation
option to 'Dynamics’ (for simulations with finite electronic temperature) or to 'DynamicsT0’
(for simulations at 0 K electronic temperature) in the DFTB block (see p. 67).

* The extended Lagrangian implementation only works for the (N,V,E) ensemble so far, so
neither thermostats nor barostats are allowed.

* The extended Lagrangian implementation currently cannot be used for spin-polarised or spin-
orbit systems, or when electron filling methods other than Fermi{} filling (see p. 43) are used.

26 CHAPTER 2. INPUT FOR DFTB*XT

Masses

Provides values of atomic masses for specified atoms, ranges of atoms or chemical species. This is
useful for example to set isotopes for specific atoms in the system.

Mass p

Any atoms not given specified masses will use the default values from the appropriate homonuclear
Slater-Koster file. An example is given below

Masses {
Mass {
Atoms = 1:2
MassPerAtom [amu] = 2.0
}
}

where Atoms specifies the atom or atoms which each have a mass of MassPerAtom assigned.

2.3.7 Socket{}

The code tries to connect to a socket interface to receive control instructions from an external driver
code.

File s Host not set -

Prefix s Host not set “/tmp/ipi_" for Protocol = i-PI{}
Host s File not set -

Port i Fileis set -

Verbosity i 0

Protocol m i-PI{}

MaxSteps i 200

File Name of UNIX style file socket to connect to.

Prefix Prefix to the file name, in the case of i-PI dialogue, the defaults to the path and file start that
i_PI expects.

Host Name or ip address of internet host to connect to (“localhost” also possible).
Port Port of host to connect to.
Verbosity Level of port traffic to document.

Protocol Choice of message protocol over the socket connection (only communication with i-PI[12]
is currently supported).

MaxSteps Number of geometry steps before termination of the DFTB™* instance. Setting this

value as -1 runs a huge() number of iterations.

Examples

First an ip address connection:

2.4. HAMILTONIAN 27

Driver = Socket {
Host = localhost
Port = 21012 # port number
Verbosity = 0 # minimal verbosity
Protocol = i-PI {} # i-Pl interface
MaxSteps = -1 # Run indefinitely

Then a UNIX socket via the /tmp file system

Driver = Socket {
File = "dftb" # The protocol defines a default path in this case
Protocol = i-PI {} # i-Pl interface
MaxSteps = 1000 # Terminate this instance after 1000 steps

}

Please note that this driver changes the default behaviour of some options to remove (usually un-
needed) file writing: WriteDetailedOut = No and WriteBandOut = No.

2.4 Hamiltonian

For calculations without geometry (if Geometry = NoGeometry{}), the type of the Hamiltonian
must be set to Model{}:

Hamiltonian = Model{}

The properties of the Model{} method are discussed in Sec. 4.8.

Currently only a DFTB Hamiltonian is implemented for ab initio atomistic calculations, so you
must set Hamiltonian = DFTB{} or Hamiltonian = Model{}.

The DFTB{} method may contain the following properties:

28 CHAPTER 2. INPUT FOR DFTB*XT

SCC 1 No

SCCTolerance r SCC = Yes le-b

MaxSCClterations i SCC = Yes 100

EwaldParameter r Periodic = Yes SCC = Yes 0.0

EwaldTolerance r Periodic = Yes SCC = Yes 1le-9

ShellResolvedSCC 1 SCC = Yes No

Mixer m SCC = Yes Broyden{} 33
MaxAngularMomentum p -

Charge r 0.0

SpinPolarisation m SCC = Yes {} 36
SpinConstants p SpinPolarisation # {} - 38
ShellResolvedSpin 1 ShellResolvedSCC = No No

SpinOrbit m SpinPolarisation # Colinear{} {} 39
Solver m RelativelyRobust{} 40
Filling m Fermi{} 42
SlaterKosterFiles plm - 43
OldSKInterpolation 1 No

PolynomialRepulsive plm {}

KPointsAndWeights (4r)+Im Periodic = Yes - 44
OrbitalPotential m SpinPolarisation # {} {} 47
ReadInitialCharges 1 SCC = Yes No

InitialCharges p SCC = Yes {}

ElectricField p SCC = Yes {} 48
Dispersion m {} 49
HCorrection m SCC = Yes None {} 63
HalogenXCorr 1 ThirdOrder(Full) = Yes, DftD3No 63
ThirdOrder 1 SCC = Yes No

ThirdOrderFull 1 SCC = Yes No 57
RangeSeparated p None 65
HubbardDerivs p ThirdOrder(Full) = Yes -

OnSiteCorrection p SCC = Yes - 66
Solvation m - 58
Differentiation m FiniteDiff 67
ForceEvaluation S "Legacy"
CustomisedHubbards p SCC = Yes

CustomisedOccupations p SCC = Yes

Dephasing p 108
Orthonormal 1 only for transport No

OrthonormalDevice 1 only for transport No

TruncateSKRange p

SCC If set to Yes, a self consistent charge (SCC) calculation is made.

SCCTolerance Stopping criteria for the SCC. Specifies the tolerance for the maximum difference
in any charge between two SCC cycles.

MaxSCClterations Maximal number of SCC cycles to reach convergence. If convergence is not
reached after the specified number of steps, the program stops. However in cases where the
calculation is not for a static structure (so Driver # {}), this behaviour can be overridden
using ConvergentForcesOnly.

2.4. HAMILTONIAN 29

EwaldParameter Sets the dimensionless parameter o in the Ewald electrostatic summation for
periodic calculations. This controls the fraction of the Ewald summation occurring in real
and reciprocal space. Setting it to zero or negative activates an automatic determination of
this parameter (default and recommended behaviour). Setting it positive forces the code to
use the supplied value. This is useful for very asymmetrical unit cells (typically a slab or
nanowire with a huge surrounding vacuum region) since the memory demand of DFTB™ can
increase dramatically in these cases (due to storage of a long range real space neighbour list).
To determine a suitable value of o for such a cell, you should initially reduce the vacuum
region and run a test calculation, looking for the value of the automatically chosen Ewald
parameter in the standard output. This is then a suitable choice for the original cell with the
large vacuum region.

EwaldTolerance Sets the tolerance for Ewald summation in periodic systems.

ShellResolvedSCC If set to Yes, all distinct Hubbard U values for the different atomic angular
momenta shells are used, when calculating the SCC contributions. Otherwise, the value
supplied for the s-shell is used for all angular momenta. Please note, that the old standard
DFTB code was not orbitally resolved, so that only the Hubbard U for the s-shell was used.
Please check the documentation of the SK-files you intend to use as to whether they are
compatible with an orbitally resolved SCC calculation (many of the biological files do not
use orbitally resolved charges), before you switch this option to Yes. Even if the Hubbard U
values for different shells are the same in the SK-files, this flag would still effect your results,
since when it is set to Yes, any charge transfer between atomic shells will change the energy
of the system compared to when it is set to set to No.

Mixer Mixer type for mixing the charges in an SCC calculation. See p. 33.

MaxAngularMomentum Specifies the highest angular momentum for each atom type. All or-
bitals up to that angular momentum will be included in the calculation. Several main-block
elements require d-orbitals, check the documentation of the SK-files you are using to deter-
mine if this is necessary. Possible values for the angular momenta are s, p, d, f.

Example:

MaxAngularMomentum = {
Ga ="p" # You can omit the quotes around the
As = "p" 4 orbital name, if you want.

}

By using the SelectedShells method it is also possible to combine shells from different Slater-
Koster files together to treat atoms containing multiple shells with the same angular momen-
tum. The shells to be picked from a particular atom type should be listed without any sep-
arating characters. The list of shells of different atom types should be separated by white
spaces.

Example:

Defining sps* basis for Si and C by combining sp and s shells from
Si and Si2, and C and C2, resp.
MaxAngularMomentum = {

Si = SelectedShells { "sp" "s" } # Si atom with sps* basis

C = SelectedShells { "sp" "s" } # C atom with sps* basis

}

30 CHAPTER 2. INPUT FOR DFTB*XT

Note, that you have to modify the Slater-Koster file definition accordingly
SlaterKosterFiles = {

Si-Si = "Si-Si.skf" "Si-Si2.skf" "Si2-Si.skf" "Si2-Si2.skf"

Si-C = "Si-C.skf" "Si-C2.skf" "Si2-C.skf" "Si2-C2.skf"

C-Si = "C-Si.skf" "C-Si2.skf" "C2-Si.skf" "C2-Si2.skf"

C-C = "C-C.skf" "C-C2.skf" "C2-C.skf" "C2-C2.skf"

}

If for a given atomic type you pick orbitals from more than one species, you must specify
an appropriate combinations of file names for the Slater-Koster tables in SlaterKosterFiles{}.
For every atom type combination ngg| X nsk2 Slater-Koster files must be defined, where ngk
and ngk» are the number species combined to build up the shells of the two interacting atoms.
The file names must be ordered with respect to the interacting species, so that the name
for the second interacting species is changed first. Above you see an example, where an
extended basis with an s*-orbital was generated by introducing the new species "Si2" and
"C2", containing the appropriate s*-orbital for Si and C, resp., as only orbitals.

In the case of multiple Slater-Koster files for a certain interaction, the repulsive data is read
from the first specified file (e.g. Si-Si.skf, Si-C.skf, C-Si.skf and C-C.skf in the example
above). The repulsive interactions in the other files are ignored. The mass for a certain
species is read from the first SK-file for its homo-nuclear interaction.

Non-minimal basis Slater-Koster data may be directly defined in the SK-files in future.
Charge Total charge of the system in units of the electron charge. Negative values mean an ex-

cess of electrons. If the keyword FixedFermilevel is present (see section 2.4.5), then value
specified here will be ignored.

SpinPolarisation Specifies if and how the system is spin polarised. See p. 36.

SpinConstants Specifies the atom type specific constants needed for the spin polarised calcula-
tions, in units of Hartree. See p. 38.

SpinOrbit Specifies if the system includes Russel-Saunders coupling. See p. 39

Solver Specifies which solver (eigensolver, Green’s function, etc.) to use with the hamiltonian.
See p. 40.

Filling Method for occupying the one electron levels with electrons. See p. 42.
SlaterKosterFiles Name of the Slater-Koster files for every atom type pair combination. See 43.

OldSKiInterpolation If set to Yes (strongly discouraged), the look-up tables for the overlap and
non-scc Hamiltonian contribution are interpolated with the same algorithm as in the old
DFTB code. Please note, that the new method uses a smoother function, is more systematic,
and yields better derivatives than the old one. This option is present only for compatibility
purposes, and may be removed in the future.

PolynomialRepulsive Specifies for each interaction, if the polynomial repulsive function should
be used. for every pairwise combination of atoms it should contain a logical value, where Yes
stands for the use of a polynomial repulsive function and No for a spline. If a specific pair of
species is not specified, the default value No is used.

Example:

2.4. HAMILTONIAN 31

Use the polynomial repulsive function for Ga-Ga and As-As interactions
in GaAs
PolynomialRepulsive = {
Ga-Ga = Yes
Ga-As = No
As-Ga unspecifed, therefore per default set to No
As-As = Yes
}

If you want to apply the same setting for all species pairs, you can specify the appropriate
logical value as argument of the SetForAll keyword:

Using polynomial repulsive functions for all interactions in GaAs
PolynomialRepulsive = SetForAll { Yes }

KPointsAndWeights [relative|absolute] Contains the special k-points to be used for the Brillouin-
zone integration. See p. 44. For automatically generated k-point grids the modifier should
not be set.

OrbitalPotential Specifies which (if any) orbitally dependant contributions should be added to
the DFTB energy and band structure. See p. 47.

ReadInitialCharges If set to Yes the first Hamiltonian is constructed by using the charge informa-
tion read from the file charges.bin or charges.dat (depending on the option WriteChargesAs-
Text, see section2.5).

InitialCharges Specifies initial charges, either for all atoms or for only selected ones. In order to
specify it for all atoms, use the keyword AllAtomCharges and supply the charge for every
atom as a list of real values:

InitialCharges = {
AllAtomCharges = { # Specifies charge for each atom in an H20 molecule
-0.88081627 # charge for atom 1 (O)
0.44040813 # charge for atom 2 (H1)
0.44040813 # charge for atom 3 (H2)

}
}

Alternatively you can specify charges individually on atoms or species using the AtomCharge
keyword. For every AtomCharge declaration you must provide a charge and the list of atoms,
which should be initialised to that charge. (You can use the same format for the list of atoms,
as described at the MovedAtoms keyword in the section for SteepestDescent):

InitialCharges = { # Specifying charge for various species
AtomCharge = {
Atoms = H
ChargePerAtom = 0.44040813
}
AtomCharge {
Atoms = O
ChargePerAtom = -0.88081627

}
}

32 CHAPTER 2. INPUT FOR DFTB*XT

Charge on atoms not appearing in any AtomCharge specification is set to be zero.

ElectricField Specifies an external electric field, arising currently from either an applied field or a
distribution of electrostatic charges. See p. 48.

Dispersion Specifies which kind of dispersion correction to apply. See p. 49.

OnSiteCorrection Used to include the on-site matrix elements of Dominguez ef al. [13]. See
p. 66.

Differentiation Specifies how to calculate finite difference derivatives in the force routines. See
p. 67.

ForceEvaluation Decides which expressions are used to calculate the ground state electronic
forces. See p. 67. Note: all methods give the same final forces when the charges are well
converged. For non-converged charges however the resulting forces can differ considerably
between methods.

CustomisedHubbards Enables overriding of the Hubbard U values for given species. If the option
OrbitalResolvedScc has been set to Yes, you need to specify one Hubbard U value for each
atomic shell in the basis of the given atom type, otherwise only one atomic value is required.
For all species not specified in this block, the value(s) found in their respective Slater-Koster
files will be used.

Warning: This option is for experts only! Overriding values stored in the SK-files may result
in inconsistent results. Make sure you understand the consequences when using this option.

Example:

CustomisedHubbards {
Si =0.320.24

}

CustomisedOccupations Enables overriding the reference neutral atom electronic occupations
of the shells. Note that the atom remains neutral since a corresponding ionic counter charge
is implicitly added to its core. This option can be used, for example, to simulate effective
doping by setting a slightly larger or smaller number of electrons on certain atoms.

Example:

CustomisedOccupations{
ReferenceOccupation{
Atoms={1:30}
p=2.01
}
ReferenceOccupation{
Atoms={31:60}
p=1.99
}
}

2.4. HAMILTONIAN 33

The example above sets a filling population of +0.01e or -0.01e in the p shell of the corre-
sponding atom indices. When the states are filled up, the electron excess or depletion results
in a shift of the Fermi level in the bands.

Warning: This option is for experts only! Overriding values stored in the SK-files may
result in inconsistent results. Please look at the transport section of the dftb+ recipes to see
an example of the correct use of this option.

Dephasing Two models of elastic dephasing ("Biittiker probe" and "vibronic dephasing") can
be used now to include the dephasing and dissipation beyond the coherent Green function
method. Thus, we made a new step towards realistic material and device modeling. See
Sec.4.9.

Orthonormal Only for transport calculations. When set to Yes, Lowdin orthogonalization is per-
formed to full Hamiltonian.

OrthonormalDevice Only for transport calculations. When set to Yes, Lowdin orthogonalization
is performed only to the central “device” part.

TruncateSKRange Enables overriding of the number of elements to be read from the Slater-
Koster parameters, shortening the interaction range of atoms.

Warning: This option is for experts only! Overriding values stored in the SK-files may result
in inconsistent results. Make sure you understand the consequences when using this option.

SKMaxDistance r -
HardCutOff 1 No

SKMaxDistance [length] Length at which to cut the overlap and non-SCC interactions for
all atoms in the system. If this length is longer than the distances in the Slater-Koster
files it will have no effect.

HardCutOff The Slater-Koster interpolation DFTB™* produces will smoothly tail off to zero
at a short distance beyond the table, which is controlled by OldSKiInterpolation. If
HardCutOff is set to Yes, then the distance set by SKMaxDistance includes this tail, i.e.,
no interactions occur beyond that distance. In the case of No this zeroing tail extends
slightly beyond the HardCutOff distance.

Example:

TruncateSKRange = {
SKMaxDistance [AA] = 4.0
HardCutOff = Yes

}

2.4.1 Mixer

DFTB® currently offers the charge mixing methods Broyden{}, Anderson{}, DIIS{} (DIIS accel-
erated simple mixer) and Simple{} (simple mixer).

https://dftbplus-recipes.readthedocs.io/en/latest/

34 CHAPTER 2. INPUT FOR DFTB*XT

Broyden{}

Minimises the error function

n+1 n n+1 n
) — p) LGl Ftl) _ p)
’F (n+1) F(”)’ |F(n+1) _F(n)|

>

E:(D m+1 ’+Z .

where G(") is the inverse Jacobian, n(™ and F(™ are the charge and charge difference vector in
iteration m. The weights are given by @y and w,,, respectively. The latter is calculated as
c
Oy = ————, 2.1
" Fm) Fm) 1)
¢ being a constant coefficient [14].

The Broyden{} method can be configured using following properties:

MixingParameter r 0.2
InverseJacobiWeight r 0.01
MinimalWeight r 1.0
MaximalWeight r 1eb
WeightFactor r le-2

MixingParameter Mixing parameter.

InverseJacobiWeight Weight for the difference of the inverse Jacobians (@y).
MinimalWeight Minimal allowed value for the weighting factors @,,.
MaximalWeight Maximal allowed value for @,,.

WeightFactor Weighting factor ¢ for the calculation of the weighting factors @,, in (2.1).
Note: As the Broyden-mixer stores a copy of the mixed quantity for each SCC iteration at a given
geometry, you may consider to choose a different mixer with lower memory requirements, if your

system needs density matrix mixing (e.g. DFTB+U), is large and needs a high number of SCC-
iterations (MaxSCClteration).

Anderson{}

Modified Anderson mixer [15].

MixingParameter r 0.05
Generations i 4
InitMixingParameter r 0.01
DynMixingParameters (2r)* {}
DiagonalRescaling r 0.01

MixingParameter Mixing parameter.

Generations Number of generations to consider for the mixing. Setting it too high can lead to
linearly dependent sets of equation.

InitMixingParameter Simple mixing parameter used until the number of iterations is greater or
equal to the number of generations.

2.4. HAMILTONIAN 35

DynMixingParameters Allows specification of different mixing parameters for different levels
of convergence during the calculation. These are given as a list of tolerances and the mixing
factor to be used below this level of convergence. If the loosest specified tolerance is reached,
the appropriate mixing parameter supersedes that specified in MixingParameter.

DiagonalRescaling Used to increase the diagonal elements in the system of equations solved by
the mixer. This can help to prevent linear dependencies occurring during the mixing process.
Setting it to too large a value can prevent convergence. (This factor is defined in a slightly
different way from Ref. [15]. See the source code for more details.)

Example:

Mixer = Anderson {

MixingParameter = 0.05

Generations = 4

Now the over-ride the (previously hidden) default old settings

InitMixingParameter = 0.01

DynMixingParameters = {
1.0e-2 0.1 # use 0.1 as mixing if more converged that 1.0e-2
1.0e-3 0.3 # again, but 1.0e-3
1.0e-4 0.5 # and the same

}

DiagonalRescaling = 0.01

}

DIIS{}

Direct inversion of the iterative space is a general method to acceleration iterative sequences. The
current implementation accelerates the simple mix process.

[nitMixingParameter r 0.2
Generations i 6
UseFromStart 1 Yes

MixingParameter Mixing parameter.
Generations Number of generations to consider for the mixing.

UseFromStart Specifies if DIIS mixing should be done right from the start, or only after the
number of SCC-cycles is greater or equal to the number of generations.

Simple{}

Constructs a linear combination of the current input and output charges as (1 — x)gin + Xqout-

| MixingParameter r 0.05

MixingParameter Coefficient used in the linear combination.

36 CHAPTER 2. INPUT FOR DFTB*XT

2.4.2 SpinPolarisation

In an SCC calculation, the code currently supports three different choices for spin polarisation;
non-SCC calculations are not spin polarised.

No spin polarisation ({})

No spin polarisation contributions to the energy or band-structure.

Colinear{}

Colinear spin polarisation in the z direction. The following options can be specified:

UnpairedElectrons r 0
RelaxTotalSpin 1 No
InitialSpins p {3

UnpairedElectrons Number of unpaired electrons. This is kept constant during the run, unless
the RelaxTotalSpin keywords says otherwise.

RelaxTotalSpin If set to Yes, a common Fermi-level is used for both spin channels, so that the
total spin polarisation can change during run. In this case, the spin polarisation specified
using the UnpairedElectrons keyword is only applied at initialisation. If set to No (default),
the initial spin polarisation is kept constant during the entire run.

InitialSpins Optional initialisation for spin patterns. If this keyword is present, the default code
behaviour is that the initial input charge distribution has a magnetisation of 0. Otherwise if it
is not present, the initial input charge distribution has a magnetisation matching the number
of UnpairedElectrons keyword.

The initial spin distribution for the input charges can be set by specifying the spin polarisation
of atoms. For atoms without an explicit specification, a spin polarisation of zero is assumed.
The InitialSpins property block must contain either the AllAtomSpins keyword with a list of
spin polarisation values for every atom, or one or more AtomSpin blocks giving the spin for
a specific group of atoms using the following keywords:

Atoms (ils)+ -
SpinPerAtom r -

Atoms Atoms to specify an initial spin value. The atoms can be specified via indices, index
ranges and species. (See MovedAtoms in section 2.3.1.)

SpinPerAtom Initial spin polarisation for each atom in this InitialSpins block.

For atoms not appearing in any of the SpinPerAtom block, an initial spin polarisation of 0 is
set.

Example (individual spin setting):

SpinPolarisation = Colinear {
UnpairedElectrons = 0.0
InitialSpins = {

AtomSpin = {
Atoms = 1:2

2.4. HAMILTONIAN 37

SpinPerAtom = -1.0

}

AtomSpin = {
Atoms = 3:4
SpinPerAtom = +1.0

}

}
}

Example (setting all spins together):

SpinPolarisation = Colinear {
UnpairedElectrons = 0.0
InitialSpins = {
AllAtomSpins = { -1.0 -1.0 1.0 1.0 } # Atoms 1,2: -1.0, atoms 3,4: 1.0
}
}

NonColinear{}

Non-collinear spin polarisation with arbitrary spin polarisation vector on every atom. The only
option allowed is to set the initial spin distribution:

’ InitialSpins p {}

InitialSpins Initialisation of the x, y and z components of the initial spins for atoms. The default
code behaviour is an initial spin polarisation of (0 0 0) for every atom.

The initial spin distribution can be set by specifying the spin polarisation vector on all atoms
using the AllAtomSpins keyword or by using one or more AtomSpin blocks with the following
options:

Atoms >ls)+ -
SpinPerAtom (3r)+ -

Atoms Atoms to specify an initial spin vector. The atoms can be specified via indices, index
ranges and species. (See MovedAtoms in section 2.3.1.)

SpinPerAtom Initial spin polarisation for each atom in this InitialSpins block.

For atoms not appearing in any of the SpinPerAtom block, the vector (0 0 0) is set.

Please note, that in contrast to the collinear case, in the non-collinear case you must specify
the spin vector (3 components!) for the atoms.

Example:

SpinPolarisation = NonColinear {
InitialSpins = {
Setting the spin for all atoms in the system
AllAtomSpins = {
0.408 -0.408 0.816
0.408 -0.408 0.816
-0.408 0.408 -0.816
-0.408 0.408 -0.816

38 CHAPTER 2. INPUT FOR DFTB*XT

}
}
}

Example:

SpinPolarisation = NonColinear {

InitialSpins = {
AtomSpin = {
Atoms = 1:2

SpinPerAtom = 0.408 -0.408 0.816
}
AtomSpin = {
Atoms = 3:4
SpinPerAtom = -0.408 0.408 -0.816
}
}
}

SpinConstants

This environment suplies the atomic constants required for either spin polarised calculations or
when evaluating properties which depend on spin interactions (triplet excitations for example). In
these cases, for each atomic species in the calculation the spin coupling constants for that atom must
be specified.

When ShellResolvedSCC = No, an extra keyword in this block controls whether the spin constants
are resolved by shell or are identical for all shells: ShellResolvedSpin, defaulting to the same value
as ShellResolvedSCC.

When shell resolved spin constants are specified, they must be ordered with respect to the pairs of
shells they couple, such that the index for the second shell increases faster. For an spd-basis, that
gives the following ordering:

Wsss WspyWsdy -+ s Wpss WppysWpds - - -y Wds, Wdp, Wdd s - - -
Example (GGA parameters for H,O):

SpinConstants = {
0={
Wss Wsp Wps Wpp
-0.035 -0.030 -0.030 -0.028

}

H={
Wss
-0.072

}
}

Several standard values of atomic spin constants are given in appendix D. Constants calculated with
the same density functional as the SK-files should be used. This input block may be moved to the
SK-data definition files in the future.

2.4. HAMILTONIAN 39

When using the SelectedShells method for the keyword MaxAngularMomentum, the spin constants
are listed as an array of values running over SK1SK2... in the same order as listed for SlaterKoster-
Files.

SpinConstants = { # not real values, only an example
Si={

Wss Wsp Wss*

-0.035 -0.030 -0.01

Wps Wpp Wps*

-0.030 -0.037 -0.02

Ws*s Ws*p Ws*s*

-0.01 -0.02 -0.01

For cases where ShellResolvedSpin = No, the spin constant for the the highest occupied orbital of
each atom should be supplied: Example (GGA parameters for H,O):

SpinConstants = {
0=/
#Wpp
-0.028

}

H={
Wss
-0.072

}
}

2.4.3 SpinOrbit

If present, specifies that L - S coupling should be included for a calculation. Currently spin unpo-
larised and non-collinear spin polarisation are supported, but not collinear spin polarisation. For
every atomic species present in the calculation the spin-orbit coupling constants, &, for that atom
must be specified for all shells present. The constants must be ordered with respect to the list of
shells for the given atom.

In the case that the spin-orbit constant for an s orbital has been set to be a non-zero value the code
prints a warning. For periodic systems, use of this keyword automatically prevents the folding by
inversion normally used in SupercellFolding{}, but manually specified KPointsAndWeights should
not be reduced by inversion.

Example (GaAs):

SpinOrbit = {
Ga [eV] = {0.0 0.12 0.0} # s p d shells
As [eV] = {0.0 0.32703} # s p shells

}

The additional option in this block, Dual, sets whether to use a block population for the local spin
matrices consistent with the dual populations of Han et al. [16] or the conventional on-site part of the

40 CHAPTER 2. INPUT FOR DFTB*XT

single particle density matrix. The default value of this option is Yes, also giving extra information
regarding atomic orbital moments in the detailed output.

2.4.4 Solver

Currently the following LAPACK 3.0 [17] eigensolver methods are always available:

* QR{}

(QR decomposition based solver)

* DivideAndConquer{}
(this requires about twice the memory of the other solvers)

* RelativelyRobust{}
(using the subspace form but calculating all states)

« MAGMA{}
(Only available for DFTB* binaries compiled with MAGMA [18, 19, 20] GPU support.
WARNING: this is currently an experimental feature, so should be used with care.)

None of these solvers need any parameters or properties to be specified.

Example:

Solver = DivideAndConquer {}

For ScaLAPACK enabled compilation, all three solvers are also available for MPI parallel use.

If DFTB* is compiled with the ELST library also included [21], the additional ELPA, OMM, PEXSI
and NTPoly solvers also become available.

Note: The ELSI-solvers are not tested with multiple OpenMP-threads. Therefore, DFTB™* will stop

with an error, if an ELSI-solver has been selected and the maximal number of allowed threads is

greater than one. (You can control the number of allowed OpenMP-threads viathe OMP__NUM _THREADS
environment variable.)

ELPA

This is available with either single or two stage solution methods (the second of these should be
more efficiently parallel for large problems).

Example:

Solver = ELPA {
Mode = 2

}

One caveat for this solver is that the number of parallel groups (see p. 79) must match the number
of k-points (times 2 in the case of collinear spin polarisation). Calculations without k-points can
use either one or two groups in the case of collinear spin polarisation.

This solver can optionally use the ELSI internal sparse interface (Sparse = Yes), but this does not
reduce memory usage and is mainly for testing purposes.

2.4. HAMILTONIAN 41

OMM

This method minimises the single particle density matrix, so does not make band structure infor-
mation available. It is only stable for insulating grounds states, i.e., systems with a HOMO-LUMO
(band) gap.

The orbital minimisation method has four options:

ninterationsELPA i 5
Tolerance r 1E-10
Choleskii 1 Yes
Sparse 1 No

ninterationsELPA Number of initial iterations to be performed with ELPA before the OMM
method starts.

Tolerance Minimisation tolerance for this solver, larger values are faster by may be less stable.

Choleskii Whether the overlap is Choleskii factorised before applying OMM. This may increase
stability of this method.

Sparse Whether the code should use the sparse matrix interface to ELSI solvers. This does not

substantially improve memory usage in this case as internally the dense problem is solved
with libOMM.

PEXSI

The PEXSI solver directly calculates the density matrix, so does not make band structure informa-
tion or Mermi free energy available. The scaling with system size is better than the other solvers
available in DFTB™, increasing as O(N,ftéan/ 2) where d is the effective dimensionality of the sys-

tem. Hence for three dimensional structures it will scale as O(N?) for general systems.

Poles i 20
ProcsPerPole i 1
muPoints i 2
SymbolicFactorProcs i 1
SpectralRadius r 10
Sparse 1 No
Threshold 1 Sparse = No 1E-15

Poles number of poles for the complex plane calculation.
ProcsPerPole processors used to calculate the inversion at each pole.
muPoints number of processors used to search for the Fermi level.

SymbolicFactorProcs number of processors to use in evaluating the factorisation pattern of ma-
trices.

SpectralRadius [Energy] extension of the complex contour.
Sparse Whether the code should use the sparse ELST matrix interface.

Threshold Sets the threshold to convert dense matrices to the internal sparse representation that
ELSI uses. This may be useful in the case of matrix factorisation issues inside the solver.

42 CHAPTER 2. INPUT FOR DFTB*XT

NTPoly

This method constructs the single particle density matrix via a purification method based on matrix
polynomials (hence requires insulating systems). The solver does not make band structure informa-
tion available, but can be linear scaling in both time and memory depending on settings and system.
Currently the solver does not support spin polarisation or k-points.

This solver has several options:

PurificationMethod i 2
Tolerance r 1E-5
Truncation r 1E-10
Sparse 1 No
Threshold 1 Sparse = No 1E-15

PurificationMethod Allowed choices are 0 for canonical purification, 1 for trace correcting pu-
rification, 2 for 4™ order trace resetting purification, and 3 for generalised hole-particle canon-
ical purification.

Tolerance Iterative convergence tolerance for this solver, larger values are faster by may be less
stable.

Truncation Tolerance below which matrix elements in the density matrix are dropped to enforce
sparsity.

Sparse Whether the code should use the sparse matrix ELSI interface.

Threshold Sets the threshold to convert dense matrices to the internal sparse representation that
NTPoly uses.

The default choices of Tolerance and Truncation lead to an accurate, but slow, solutions. Alterna-
tively linear scaling can be achieved at smaller system sizes with a larger choice of these values.

Values in the range of 1E-3 and 1E-6 for Tolerance and Truncation may be suitable (but test the
quality of the solutions).

2.4.5 Filling

There are currently two types of filling supported (see below). Both have common options:

Temperature r AdaptFillingTemp = No 0.0
IndependentKFilling 1 Periodic = Yes No
FixedFermilLevel 112)r -

Temperature [energy| Electron temperature in energy units. This property is ignored for ther-
mostated MD runs, if the AdaptFillingTemp property of the thermostat has been set to Yes
(See p. 21).

IndependentKFilling Causes the occupation of the eigenstates to be independently determined
for each k-point, thus preventing electron transfer between the k-points. Please note that the
value for the Fermi level printed out by the code is meaningless in that case, since there is no
common Fermi level for all k-points. This option is incompatible with use of the FixedFer-
milLevel keyword.

2.4. HAMILTONIAN 43

FixedFermilLevel [energy] Can be used to fix the Fermi-level (total chemical potential, tt) of the
electrons in the system. For collinear spin polarisation, values for up and down spin channels
are required. Otherwise only a single global chemical potential is required. If this option is
present, the total charge and the total spin of the system are not conserved (settings in the
options Charge and UnpairedElectrons will be ignored). If a fixed chemical potential is used,
the output force related energy includes the contribution to the free energy, —Nu, hence if
differentiated will give the forces and stresses (if periodic).

Fermi{}

Fills the single particle levels according to a Fermi distribution. When using a finite temperature,
the Mermin free energy (which the code prints) should be used instead of the total energy. This is
given by E — T'S, where the electron entropy S is used.

Example:
Filling = Fermi {
Temperature [K] = 300
}

MethfesselPaxton{}

Produces a Fermi-like distribution but with much lower electron entropy [22]. This is useful for
systems that require high electron temperatures (for example when calculating metallic systems).
There is an additional option for this type of filling:

Order i 2
| |

Order Order of the Methessel-Paxton scheme, the order must be greater than zero, and the 1st
order scheme is equivalent to Gaussian filling.

Note: Due to the non-monotonic behaviour of the Methfessel-Paxton filling function, the position of
the Fermi-level is not necessary unique for a given number of electrons. Therefore, different fillings,
band entropies, and Mermin free energies may result, depending which one has been found by the
Fermi-level search algorithm. The differences, however, are usually not physically significant.

2.4.6 SlaterKosterFiles

There are two different ways to specify the Slater-Koster files for the atom type pairs, explicit
specification and using the Type2FileNames{} method.

Explicit specification

Every pairwise permutation atomic types, connected by a dash, must occur as a property with the
name of the corresponding file as an assigned value.
Example (GaAs):

SlaterKosterFiles = {
Ga-Ga = "./Ga-Ga.skf"

44 CHAPTER 2. INPUT FOR DFTB*XT

Ga-As = "./Ga-As.skf"
As-Ga = "./As-Ga.skf"
As-As = "./As-As.skf"

}

If you treat shells from different species as shells of one atom by using the SelectedShells{} key-
word in the MaxAngularMomentum{} block, you have to specify more than one file name for cer-
tain species pairs. (For details see the description about the MaxAngularMomentum{} keyword.)

Type2FileNames{}

You can use this method to generate the name of the Slater-Koster files automatically using the
element names from the input geometry. You have to specify the following properties:

Prefix S
Separator S

Suffix S ""
LowerCaseTypeName 1 No

Prefix Prefix before the first type name, usually the path.
Separator Separator between the type names.
Suffix Suffix after the name of the second type, usually extension.

LowerCaseTypeName If the name of the types should be converted to lower case. Otherwise
they are used in the same way, as they were specified in the geometry input.

Example (for producing the same file names as in the previous section):

SlaterKosterFiles = Type2FileNames {

Prefix ="./"
Separator = "-"
Suffix = ".skf"

LowerCaseTypeName = No

}

The Type2FileNames method can not be used if an extended basis was defined with the Selected-
Shells method.

2.4.7 KPointsAndWeights

The k-points for the Brillouin-zone integration can either be specified explicitly, or automatically
for supercells by using the SupercellFolding{} or KLines{} methods for supercells or either Heli-
calUniform{} or HelicalSampled{} for helical boundary conditions.

Note: For the automatic grid methods, the KPointsAndWeights keyword is not allowed to have a
modifier.

2.4. HAMILTONIAN 45

Explicit specification

Each k-point and its weight in the integral should be specified, for supercells this requires that
four real numbers must be specified for each point: The coordinates of the given k-point followed
by its weight, while for helical coordinates there are two coordinates (along the helical axis and
with respect to the rotation around the axis) and the weight of the point. By default, coordinates
are specified in fractions of the reciprocal lattice vectors. If the modifier absolute is set for the
KPointsAndWeights keyword, absolute k-point coordinates in atomic units are instead expected.
The sum of the k-point weights is automatically normalised by the program.

KPointsAndWeights = { # 2x2x2 MP-scheme
0.25 0.25 0.25 1.0
0.25 0.25-0.25 1.0
0.25-0.25 0.25 1.0
0.25-0.25-0.25 1.0

}

SupercellFolding{}

This method generates a sampling set containing all the special k-points in the Brillouin zone related
to points that would occur in an enlarged supercell repeating of the current unit cell. If two k-points
in the BZ are related by inversion, only one (with double weight) is used (in the absence of spin-orbit
coupling this is permitted by time reversal symmetry). The SupercellFolding{} method expects 9
integers and 3 real values as parameters:

nyy np N3

nyy N2 N3

n3p N3y N33
S1 S 83

The integers n;; specify the coefficients used to build the supercell vectors A; from the original
lattice vectors a;:

3
A,’ = Zn,-jaj.
Jj=1

The real values, s;, specify the point in the Brillouin-zone of the super lattice, in which the folding
should occur. The coordinates must be given in relative coordinates, in the units of the reciprocal
lattice vectors of the super lattice.

The original /; x I, x I3 Monkhorst-Pack sampling [23] for cubic lattices corresponds to a uniform
extension of the lattice:

L 0 O
0 L O
0 0 &L
ST 8§22 83

where s; is 0.0, if /; is odd, and s; is 0.5 if /; is even. For the 2 x 2 x 3 scheme, you would write for
example

2x2x3 MP-scheme according original paper
KPointsAndWeights = SupercellFolding {

46 CHAPTER 2. INPUT FOR DFTB*XT

coonwN
oo N o
o wo o

}

To use k-points for hexagonal lattices which are consistent with the erratum to the original paper
[24], you should set the shift for the unique “c” direction, s3, in the same way as in the original
scheme. The s; and s, shifts should be set to be 0.0 independent of whether /; and /, are even or
odd. So, for a 2 x 3 x 4 sampling you would have to set

2x3x4 MP-scheme according modified MP scheme
KPointsAndWeights = SupercellFolding {

2 0 0
0 3 0
0 0 4
0.0 0.0 05

}

It is important to note that DFTB* does not take the symmetry of your system explicitly into
account. For small high symmetric systems with a low number of k-points in the sampling this
could eventually lead to unphysical results. (Components of tensor properties—e.g. forces—could be
finite, even if they must vanish due to symmetry reasons.) For those cases, you should explicitly
specify k-points with the correct symmetry.

KLines{}

This method specifies k-points lying along arbitrary lines in the Brillouin zone. This is useful when
calculating the band structure for a periodic system. (In that case, the charges should be initialised
from the saved charges of a previous calculation with a proper k-sampling. Additionally for SCC
calculations the number of SCC cycles should be set to 1, so that only one diagonalisation is done
using the initial charges.)

The KLines{} method accepts for each line an integer specifying the number of points along the
line segment, and 3 real values specifying the end point of the line segment. The line segments do
not include their starting points but their end points. The starting point for the first line segment
can be set by specifying a (zeroth) segment with only one point and with the desired starting point
as end point. The unit of the k-points is determined by any modifier of the KPointsAndWeights
property. (Default is relative coordinates.)

Example:

KPointsAndWeights [relative] = KLines {
1 05 0.0 0.0 # Setting (and calculating) starting point 0.5 0.0 0.0
10 0.0 0.0 0.0 +# 10 points from 0.5 0.0 0.0 to 0.0 0.0 0.0
10 0.5 0.5 0.5 # 10 points from 0.0 0.0 0.0 to 0.5 0.5 0.5
1 0.0 0.0 0.0 # Setting (and calculating) a new starting point
10 0.5 0.5 0.0 # 10 points from 0.0 0.0 0.0 to 0.5 0.5 0.0
}

Note: Since this set of k-points probably does not correctly integrate the Brillouin zone, the default
value of MaxScclterations is set to be 1 in this case.

2.4. HAMILTONIAN 47

HelicalUniform{}

This method specifies k-points lying along the generalized reciprocal vector of the Brillouin zone
of a helical cell and around the order-n rotational axis (currently the k-points that exactly represent
the C, rotation are used). The HelicalUniform{} method expects 1 integer and 1 real value as
parameters, where the first value specifies the number of sampling points along the helical axis,
while the second gives the shift (analogous to the three dimensional case of SupercellFolding{}) in
this direction. A shift of 0.5 appears to give more rapid convergence of the grid.

Example:

KPointsAndWeights = HelicalUniform {80 0.5}

HelicalSampled{}

Instead of exactly integrating around the C, rotation in k-space, the HelicalSampled{} method al-
lows for a sampled integration. It expects 4 values: the first two are the number of sample points
along the helix and around the rotation respectively, while the second two are shifts in the grid.

Example:

KPointsAndWeights = HelicalSampled {20 4 0.5 0.25}

There are several things to note here: firstly, the second grid (values 4 and 0.25 in the example
above) approximates the integration around the C,, symmetry, so should only be used where the
order of this rotation axis is large. Secondly, non-zero shifts in the grid, particularly for small
numbers of sampling points, are likely to be unphysical as are shifts for the grids at the exact order
of the rotation operation.

2.4.8 OrbitalPotential

Currently the FLL (fully localised limit) and pSIC [25] (pseudo self interaction correction) forms
of the LDA+U corrections [26] are implemented. These potentials effect the energy of states on
designated shells of particular atoms, usually increasing the localisation of states at these sites. The
FLL potential lowers the energy of occupied states localised on the specified atomic shells while
raising the energy of unoccupied states. The the pSIC potential corrects the local part of the self-
interaction error and so lowers the energy of occupied states (see Ref. [25] for a discussion of the
relation between these two potentials, and possible choices for the UJ constant). These particular
corrections are most useful for lanthanide/actinide f states and some localised d states of transition
metals (Ni3d for example).

The Functional option chooses which correction to apply, followed by a list of the specific correc-
tions, listed as an atomic species and the shells on that atom followed by the U — J constant for that
block of shells.

OrbitalPotential = {

Functional = {FLL}

Si={
Shells = {1 2} # sp block on the atom
UJ=0.124

}
}

48 CHAPTER 2. INPUT FOR DFTB*XT

2.4.9 ElectricField

This tag contains the specification for an external electric field. Electric fields can only be specified
for SCC calculations. You can apply the electric field of point charges® and/or a homogeneous
external field (which may change harmonically in time). The ElectricField block can currently
contain either one or more PointCharges blocks and potentially an External block.

PointCharges

The specification for PointCharges has the following properties:

CoordsAndCharges (4r)+ _
GaussianBlurWidth r Periodic = No 0.0

CoordsAndCharges [length] Contains the coordinates and the charge for each point charge (four
real values per point charge). A length modifier can be used to alter the units of the coordi-
nates. The charge must be specified in proton charges. (The charge of an electron is -1.)

If you read in a huge number of external charges the parsing time to process this data could be
unreasonably long. You can avoid this by including the coordinates and the charges directly
from an external file via the DirectRead{} method (see the example in the next paragraph).
Please note that when using this method the program will only read the specified number of
records from the external file, and ignores any additional data (so do not leave comments in
the external file for example). The external file should contain only one record (3 coordinates
and 1 charge) per line.

GaussianBlurWidth [length] Specifies the half width ¢ of the Gaussian charge distribution, which
is used to delocalise the point charges. The energy of the coulombic interaction Ec between
the delocalised point charge M with charge Oy, and the atom A with charge g4 is weighted by
the error function as

B

Ec(A,M) = 94Qm erf [m%]

FAM
where r4 is the distance between the point charge and the atom.

A length modifier can be used to specify the unit for o.

Example:

ElectricField = {
1st group of charges, with Gaussian delocalisation
We have 100000 charges, therefore we choose the fast reading method.
PointCharges = {
GaussianBlurWidth [Angstrom] = 3.0
CoordsAndCharges [Angstrom| = DirectRead {
Records = 100000
File = "charges.dat"

}
¥

2nd group of charges, no delocalisation (sigma = 0.0)
PointCharges = {
CoordsAndCharges [Angstrom] = {

30nly in calculations with fixed lattice constants.

2.4. HAMILTONIAN 49

33 -1.2 09 9.2
1.2 -34 56 -33

}
}
}

External

Specifies a homogeneous external electric field. In the case of periodic calculations, a saw-tooth
potential is currently used, hence it is up to the user to guarantee that there is a vacuum region
isolating periodic copies of the system along the applied field direction. We suggest that you place
the structure in the ‘middle’ of the unit cell if possible, to reduce the chances of atoms approaching
cell boundaries along the direction of the applied electric field. The code will halt if atoms interact
with periodic images of the unit cell along the direction of the electric field.

The External field keyword has the following options

Strength r -
Direction 3r

Frequency r molecular dynamics used 0.0
Phase i Geometry step offset 0

Strength [Electric field strength] Specified strength of the applied field.

Direction Vector direction of the applied field (the code normalises this vector). In the case of pe-
riodic calculations, currently the system must not be continuous in this direction (see above).

Frequency [Frequency] If using molecular dynamics, the field can be time varying with this fre-
quency.

Phase Initial field phase in units of geometry steps, this is needed if restarting an MD run in an
external field to give the offset in phase of the field after the specified number of steps from
the old calculation. The applied field is of the form

Eqsin(wAt(step + phase))

where Ej is the field vector specified by Strength and Direction, @ is the angular Frequency
and step is the current MD-step in the simulation, using the MD TimeStep of Af (see section
2.3.6).

2.4.10 Dispersion

The Dispersion block controls whether DFTB interactions should be empirically corrected for van
der Waals interactions, since DFTB (and SCC-DFTB) does not include these effects. Currently,
four different dispersion correction schemes are implemented (for the detailed description of the
methods see the following subsections):

* LennardJones: Dispersion is included via a Lennard-Jones potential between each pair of
atoms. The parameters for the potential can either be entered by the user or the program can
automatically take the parameters from the Universal Force Field (UFF) [27].

50 CHAPTER 2. INPUT FOR DFTB*XT

* SlaterKirkwood: The dispersion interaction between atoms is taken from a Slater-Kirkwood
polarisable atomic model [28].

» DftD3: Dispersion is calculated as in the dftd3 code [29, 30] (see section 2.4.10). Modifica-
tion hydrogen bond interaction strengths (see section 2.4.14).

» DftD4: Dispersion is calculated using the D4 model [31, 32] (see section 2.4.10).

LennardJones

The Lennard-Jones dispersion model in DFTB™ follows the method of Ref. [33], using the follow-

ing potential:
N6 N 12
U,‘j(l’) = d,‘j |:—2 (%) + (%) :| r>=ro

Uij(l”) = U0+U11’5—|—U27‘10 r<ry

where ry is the distance at which the potential turns from repulsive to attractive. The parameters d;;
and r;; are built from atomic parameters d;, d; and r;, r; via the geometrical mean (d;; = \/did;,
rij = \/Tirj). The parameters Uy, Uy, U, ensure a smooth functional form at ry.

The parameters r; and d; can either be taken from the parameters of the UFF [27] (as in Ref. [33])
or can be specified manually for each species.

Example using UFF parameters:

Dispersion = LennardJones {
Parameters = UFFParameters {}

}

Example using manually specified parameters:

Dispersion = LennardJones {
Parameters {
H{
Distance [AA] = 2.886
Energy [kcal/mol] = 0.044
by
0 {
Distance [AA] = 3.500
Energy [kcal /mol] = 0.060

}
}
}

The UFF provides dispersion parameters for nearly every element of the periodic table, therefore
it can be used for almost all systems “out of the box”. The parameters are also independent of the
atomic coordination number, allowing straight forward geometry relaxation or molecular dynamics
(unlike the current implementation of Slater-Kirkwood type dispersion).

2.4. HAMILTONIAN 51

SlaterKirkwood

A Slater-Kirkwood type dispersion model is also implemented in DFTB* as described in Ref. [28].*
This model requires atomic polarisation values, van der Waals radii and effective charges for every
atom in your system. These parameters are dependent on the coordination of each atom, hence
values for different atoms of the same species may vary depending on local environment. You can
supply these parameters for the atoms in either of two ways, both using the PolarRadiusCharge tag.

The first option is to specify the values within the PolarRadiusCharge environment by providing
three real values (polarisability, van der Waals radius, effective charge) for each atom separately.

Example:

Dispersion = SlaterKirkwood {
Using Angstrom” 3 for volume, Angstrom for length and default
unit for charge (note the two separating commas between the units)
PolarRadiusCharge [Angstrom”3,Angstrom,] = {
Polar Radius Chrg
0.560000 3.800000 3.150000 # Atom 1: O
0.386000 3.500000 0.800000 # Atom 2: H
0.386000 3.500000 0.800000 # Atom 3: H

}
}

Alternatively you can provide values for each atomic species in your system, but must supply dif-
ferent values for different coordination numbers using the HybridDependentPol{} keyword. The
code needs specific parameters for each type of atom in environments with 0, 1, 2, 3, 4 or >5 neigh-
bours. DFTB™ then picks the appropriate values for each atom based on their coordination in the
starting geometry. Two atoms are considered to be neighbours if their distance is less than the sum
of their covalent radii, hence you need to supply the covalent radii for each atomic species using the
CovalentRadius keyword. This is then followed by a HybridPolarisations block containing a list of
six values for atomic polarisabilities then six van der Waals radii and finally a single hybridisation
independent effective charge for that atomic species.

Example:

Dispersion = SlaterKirkwood {
PolarRadiusCharge = HybridDependentPol {
0 ={
CovalentRadius [Angstrom] = 0.8
HybridPolarisations [Angstrom~3,Angstrom,] = {
Atomic polarisabilities 0-5 van der Waals radii 0-5 chrg
0.560 0.560 0.560 0.560 0.560 0.560 3.8 3.8 3.8 3.8 3.8 3.8 3.15

}
}
H={

CovalentRadius [Angstrom] = 0.4
HybridPolarisations [Angstrom~3,Angstrom,] = {

2C¢CP papp

, in equation (9) the con-
PACe+PRCE a (

“4Please note, that Ref. [28] contains two typos: equation (7) should read Cg b_

tribution from the dispersion should be Eg;s = —% Yopf (Raﬁ)Cg P (Raﬁ)*6. This option is also currently incompatible
with lattice optimisation and the use of barostats.

52 CHAPTER 2. INPUT FOR DFTB*XT

Atomic polarisabilities 0-5 van der Waals radii 0-5 chrg
0.386 0.396 0.400 0.410 0.410 0.410 353535353535 0.8

}
}
}
}

Warning: For both methods of specifying the Slater-Kirkwood dispersion model the code keeps the
dispersion parameters fixed for each atom during the entire calculation. Even if the geometry (and
therefore the hybridisation) of atoms changes significantly during the calculation, the parameters are
unchanged. Therefore if atoms are able to move during your calculation (geometry relaxation or
molecular dynamics) you should always check whether the coordination of your atoms has changed
during the run.

Furthermore, when using the HybridDependentPol{} method we suggest that you first set the
StopAfterParsing keyword in the ParserOptions block to Yes (see p. 79) and inspect the gener-
ated polarisabilities, radii and charges for every atom in the dftb _pin.hsd file. If fine tuning of the
generated values turns out to be necessary, you should replace the hybrid dependent specification in
the input file with corrected atom specific values based on dftb _ pin.hsd.

In order to find suitable parameters for the Slater-Kirkwood model, you should consult Ref. [28]
and further references therein. Appendix E contains values which have already been used by some
DFTB-users for a few elements.

DftD3

The DFT-D3 dispersion correction in DFTB™* is an implementation of the method used in the code
’dftd3’ by Stefan Grimme and coworkers. It is based on the ansatz described in Refs. [29] and [30].
Note: the DFTB™ binary must be compiled with the DFT-D3 library enabled to use this feature.

This dispersion correction for DFTB adds a contribution to the general Kohn-Sham-like energy
Eprr-p3 = EDFTB + Edisp

with Eprrg being the DFTB total energy and Eg;sp the dispersion energy. The latter contains two-
body and optional three-body contributions:

_r® (3)
Edlgp Edlsp + Edlsp

The form of the two-body contribution can change depending on the chosen damping factor:

* Becke-Johnson damping function:

EWY 1 Z Z CﬁB
disp 2 \Thn=os "rhpt F(RGP)
with

F(R®) = aiRG® + an.

» Zero-damping (dispersion at short distances is damped to zero):

dlsp__izsn fdn rAB)

A;éB TAB

2.4. HAMILTONIAN 53

with
1

 14+6(rap/ (seaRG®))

fd,n

In order to adjust the dispersion for various energy functionals, the choice of s¢, s and the damping
parameters a; and a; (for Becke-Johnson-damping) or s, ¢ and o (for zero damping) are treated as
functional-dependent values. All other parameters are fixed based on these parameters.

As the DFTB energy functional is largely determined by the underlying parameterisation (the Slater-
Koster-files) and the chosen DFTB model (e.g. non-scc, scc, 3rd order, etc.), there are no universal
parameter choices which can be used with all settings, but some relevant choices for various param-
eterisation are given in Appendix F.

Note: for the version 6 or earlier of the DFTB™ input parser (see section 2.9) the default values
of these parameters are set to be appropriate for DFTB3. But from parser version 7 onwards, no
default values are set.

Example using adjusted parameters with Becke-Johnson damping:

Dispersion = DftD3 {
Damping = BeckeJohnson {
al = 0.5719
a2 = 3.6017
}
s6 =1.0
s8 = 0.5883

}

Example using zero-damping:

Dispersion = DftD3 {
Damping = ZeroDamping {
sr6 = 0.7461
alpha6 = 14.0
}
s6 = 1.0
s8 = 3.209

}

DftD3 optional settings

Apart from the functional dependent dispersion parameters, you can also adjust the additional pa-
rameters as shown below. The default values for these parameters are taken to be the same as in the
dftd3 code.

Cutoff r /9000
CutoffCN r 40
Threebody 1 No
HHRepulsion 1 No

Cutoff [length] Cutoff distance when calculating two-body interactions.

CutoffCN [length] Cutoff distance when calculating three-body interactions.

54 CHAPTER 2. INPUT FOR DFTB*XT

Threebody Whether three-body contributions should be included in the dispersion interactions.

HHRepulsion Required when calculating the DFTB3-D3HS5 [34] modification to D3 dispersion
(see section 2.4.14 for details and parameter values). This keyword enables an additional
short range repulsion term in all hydrogen—hydrogen pairs [35] which prevents them from
approaching too closely together.

DftD4

The DFT-D4 dispersion correction in DFTB™ is an implementation of the D4 model by Stefan
Grimme and coworkers. It is based on the method described in Ref. [32].

This dispersion correction for DFTB adds a contribution to the general Kohn—Sham-like energy,
Eprre-D4 = EDFTB + Edisp,

with Epprg being the DFTB total energy and Egisp the dispersion energy. The latter contains two-
body and optional three-body contributions:

2)

(3)
isp TE.

_ 5l
Egip = E4 disp*
The D4 model uses the Becke—Johnson damping function for two-body contributions:

- 1y oy '
disp 2 \TBn—63.10 "+ F(RAB)

with

F(RY®) = a1RE® + a.

The zero-damping function for three-body contributions is:

(3cosB04cosBpcosBc+1) Cg‘BCgCCgA
T X)
A B C (raBrBcrca)
B<AC<B
with
£ !

146/ S(RA) (REC) 1 (RE™)) o

YABYBCTCA
In order to adjust the dispersion for various energy functionals, the choice of sg and the damping
parameters a; and a; are treated as functional-dependent values. All other parameters are fixed
based on these parameters. Depending on the choice of the sg9 parameter non-additive triple-dipole
contributions will be evaluated. Including non-additive effects usually improves the description of
dispersion interactions, but is also more expensive.

As the DFTB energy functional is largely determined by the underlying parameterisation (the
Slater—Koster-files) and the chosen DFTB model (e.g. non-scc, scc, 3rd order, etc.), there are no
universal parameter choices which can be used with all settings, but some relevant choices for vari-
ous parameterisation are given in Appendix G.

2.4. HAMILTONIAN

DftD4 settings

55

Beside the functional dependent dispersion parameters, the options shown below can be adjusted in

the input.
s6 r 1.0
s8 r
s10 r 0.0
s9 r
al r
a2 r
alpha r 16.0
WeightingFactor r 6.0
ChargeSteepness r 2.0
ChargeScale r 3.0
Cutoffinter r 64
CutoffThree r 40
CoordinationNumber m Cov 56
ChargeModel m EEQ 55

s8, s9, al, a2 Functional dependent dispersion parameters, see equations above.
s6 Parameter for scaling pairwise dipole—dipole dispersion interaction, should always be set to 1.0.

s10 Parameter for pairwise quadrupole—quadrupole dispersion interactions, should be kept set to
0.0.

alpha Zero damping exponent for three-body damping function, default is 16 as in DFT-D3.

WeightingFactor Coordination number based interpolation, 4.0 used in DFT-D3, default for D4
is 6.0.

ChargeScale Maximum possible charge scaling, used as exponential value, should be kept set to
3.0.

ChargeSteepness Steepness of the charge scaling function, should be kept set to 2.0.
Cutoffinter [length] Cutoff distance when calculating two-body interactions.

CutoffThree [length] Cutoff distance when calculating three-body interactions.

DftD4 ChargeModel

This implementation of DFT-D4 supports only the EEQ{} method to initialize the charge model
with an electronegativity equilibration (EEQ) model.[36] For each species four parameters (Chi,
Gam, Kcn, and Rad) have to be supplied in a Values{} method, since the model is instanciated
inside the DftD4{} method, Defaults{} for all elements up to 86 can be supplied automatically.[32]

56 CHAPTER 2. INPUT FOR DFTB*XT

Chi m Defaults

Gam m Defaults

Ken m Defaults

Rad m Defaults

Cutoff r 40

EwaldParameter r 0.0

EwaldTolerance r 1.0e-9

CoordinationNumber m Erf 56

Chi Electronegativities of all species.

Gam Chemical hardnesses of all species.

Kcn CN scaling factor of all species.

Rad Charge width of all species in Bohr.

Cutoff [length] Cutoff distance when calculating electrostatics interactions under PBC.

EwaldParameter Sets the splitting parameter in the Ewald electrostatic summation for periodic
calculations. This controls the fraction of the Ewald summation occurring in real and recipro-
cal space. Setting it to zero or negative activates an automatic determination of this parameter
(default and recommended behaviour).

EwaldTolerance Sets the tolerance for Ewald summation in periodic systems.

ChargeModel = EEQ {
EwaldParameter = 0.25165824
EwaldTolerance = 1.0E-9
Chi = Values {
Ga = 1.15018618
As = 1.36313743

}

Gam = Values {
Ga = 8.299615E-2
As = 0.19005278

}

Ken = Values {
Ga = -1.05627E-002
As = 7.657769E-002

}

Rad = Values {
Ga = 1.76901636
As = 2.41244711

}
}

DftD4 CoordinationNumber

The CoordinationNumber determines how the local coordination environment for its parent method
is calculated. Currently four different counting functions are available: Erf{}, Cov{}, Gfn{}, and

2.4. HAMILTONIAN 57

Exp{}. Erf{} is the default coordination number for the EEQ charge model, while Cov{} is the
default coordination number for DFTD4.

Electronegativities m PaulingEN

Radii m CovalentRadiiD3
Cutoff r 40

CutCN r 0/8

Radii Covalent radii of all species in Bohr. Default values taken are the DFTD3 covalent radii.[29]
Electronegativities Electronegativities of all species. Default values taken are Pauling ENGs.
Cutoff [length] Cutoff distance when evaluating counting function.

CutCN Maximum value for coordination number, coordination numbers higher than this value
will be smoothly cut away. Deactivated for values smaller or equal to zero. Default depends
on parent method.

CoordinationNumber = Cov {
CutCN =0
Electronegativities = PaulingeN {}
Radii = CovalentRadiiD3 {}

}

24.11 DFTB3

If you would like to use what is called “DFTB3” in some publication(s) [37], this group of options
include the relevant modifications to the SCC Hamiltonian and energy. To enable the DFTB3 model
you will need to set ThirdOrderFull = Yes and damp H-X the interactions (see Section 2.4.14).

ThirdOrder If set to Yes the on-site 3rd order correction [38] is switched on. This corrects the
SCC-Hamiltonian with the derivatives of the Hubbard U parameters, which you have to spec-
ify for every element in HubbardDerivs. This correction only alters the on-site elements and is
only maintained for backward compatibility. You should use the full version ThirdOrderFull
instead.

ThirdOrderFull If set to Yes the full 3rd order correction [37] is switched on. This corrects the
SCC-Hamiltonian with the derivatives of the Hubbard U parameters, which you have to spec-
ify for every element in HubbardDerivs.

HubbardDerivs Derivatives of the Hubbard U for the 3rd order correction (on-site or full). For
every element the appropriate parameter (in atomic units) must be specified. If you use shell
resolved SCC (with full 3rd order), you must specify a list of derivatives for every element,
with one Hubbard U derivative for each shell of the given element.

Hamiltonian = DFTB {

ThirdOrder = Yes
HubbardDerivs {
0=-0.14
H = -0.07

58 CHAPTER 2. INPUT FOR DFTB*XT

2.4.12 Implicit Solvation Model
Generalized Born Model

In generalized Born (GB) theory,[39] a molecule is considered as continuous region with a dielectric
constant &, surrounded by infinite solvent with a dielectric constant &y, Charges ga are located at
the atomic sites R and their interaction in the presence of a polarized solvent can be expressed as
the solvation energy

11 1\ g
AGap =~ <8__ > Yy e 2.2)
1n

1
Eout A=1B=1 R 2
<R12XB +aaagexp {_ Tarap })

where aa/p are the effective Born radii of the atoms A/B. The GB model is added to the Hamiltonian
as second order fluctuation in the charge density, similar to the coulombic interactions.

The Born radii are evaluated by an Onufriev—Bashford—Case (OBC) corrected pairwise approxima-
tion to the molecular volume given as

1 1 1 1
P - -tanh |bopcWa — 92 4 dopeW 23
aa dscale <RCAOV —Roffset RYY [OBC T'A — COBC ¥ A 1+ dOBC A]) 2.3)

where ag,1e 1s a scaling factor for the Born radii, Rofsset s a global shift parameter for the covalent
radii and a/b/copc are the coefficients for the volume polynomial in the OBC correction to the
Born radii. Wy is the pairwise approximation to the volume integral given by

RV _ R
¥y = A MY Q(Rap, RY”, s5REY") (2.4)
B

with Q being the pairwise function used to approximate the volume integral, which is only depen-
dent on the distance and the covalent radii. Note that, the covalent radius of the second atom is
scaled by the element-specific descreening value sg to compensate the systematic overestimation of
the volume by this approach.

To use the generalized Born model in the SCC procedure use the GeneralizedBorn{} method in the
input to Solvation. The non-polar solvent area model can be combinded with the GB model enabling
to additionally correct for hydrogen bonding, the resulting model is called GBSA. The parameters
for the GBSA model are currently available at https://github.com/grimme-lab/gbsa-parameters
and can be read in with ParamFile and will setup the complete GeneralizedBorn{} input.

Note that the GB(SA) model implemented is only available for finite systems.

https://github.com/grimme-lab/gbsa-parameters

2.4. HAMILTONIAN 59

ParamFile S
Solvent m not has ParamFile
FreeEnergyShift r

r 298.15 K

S

r

r

gsolv

Temperature
State
BornScale
BornOffset
OBCCorrection 3r 1.00, 0.80, 4.85
CM5 m 61
Radii m vanDerWaalsRadiiD3
Descreening m

Cutoff r

SASA
HBondCorr has SASA
HBondStrength HBondCorr = Yes

35 AA
62

=

ParamFile Reads in a parameter file for GBSA, specifying this keyword automatically provides
the Solvent information, and defaults values for FreeEnergyShift, BornOffset, BornScale,
SASA{} Descreening, HBondCorr and HBondStrength. Usually no other keywords need to
be specified when ParamFile is present.

Solvent Descriptors of the solvent, can be load from a database by providing the solvent name as
string in the FromName{} method or by specifying the necessary values with the FromCon-
stants{} method. FromConstants{} requires the dielectric constant as real for Epsilon, the
molecular mass in MolecularMass [mass] and the solvent density in Density [massdensity).
MolecularMass and Density only affect the calculation if “reference” is chosen as state of the
solution.

FreeEnergyShift [energy] Shift for free energy calculations.

Temperature Temperature for free energy calculations. Default is ambient temperature: 298.15
K. Only affects the calculation for if “reference” or “mollbar” is chosen as state of the solu-
tion.

State [energy] Reference state of the solution for free energy calculations. The calculated state
shift is added to the free energy shift. Takes “gsolv” (default), “reference” or “mollbar”. The
reference state “gsolv* corresponds to 1 1 of ideal gas and 1 1 of liquid solution, “reference”
corresponds to 1 bar of ideal gas and 1 mol/L of liquid solution at infinite dilution, “mol1bar”
corresponds to 1 bar ideal gas and 1 mol/L of liquid solution.

BornScale Value for scaling of Born radii.
BornOffset [length] Offset value for Born radii calculation.

OBCCorrection Parameters for Onufriev—Bashfold—Case volume polynomial to correct Born radii
calculation. The default values 1.0, 0.8, 4.85 correspond to GBOBCII, alternatively 0.8, 0.0,
2.91 can be used for GBOBCT.[40]

CM5 Use the charge model 5 to correct the atomic partial charges before evaluating the Born
energy.

Radii Atomic radii for each element in Bohr, either takes VanDerWaalsRadiiD3{} for DFT-D3
van-der-Waals radii (can be overwritten) or requires to provide Values{} for all species. Both
methods accept [length| units.

60 CHAPTER 2. INPUT FOR DFTB*XT

Descreening Descreening values for each species. Disabled by Unity{} method or enabled by
providing Values{} for each species.

Cutoff [length] Real space cutoff for the calculation of the Born radii.
HBondCorr Include an empirical hydrogen bond correction. Only available for GBSA models.

HBondStrength Hydrogen bonding strength for each species used in the empirical hydrogen bond
correction. To disable the correction for species not involved in hydrogen bonding, set the
value to zero.

Example for a GB model with CS2 as solvent:

Hamiltonian = DFTB {

Solvation = GeneralizedBorn { # GFN2-xTB/GBSA(CS2)
Solvent = fromName { "cs2" }
FreeEnergyShift [kcal /mol] = 2.81072250
Radii = vanDerWaalsRadiiD3 [Bohr] {}
Descreening = Values {

H = 0.93699367

C = 0.83307834

N = 1.02661619

O = 0.96508008
}
BornScale = 1.40636177
BornOffset [Bohr] = 1.653719965215E-03
OBCCorrection = {1.00 0.80 4.85}
Cutoff = 40

Example for a GBSA model for water

Hamiltonian = DFTB {
Solvation = GeneralizedBorn { # GFN2-xTB/GBSA(water)
Solvent = fromConstants {
Epsilon = 80.2
MolecularMass [amu] = 18.0
Density [kg/l] = 1.0
}
FreeEnergyShift [kcal /mol] = 1.16556316
BornScale = 1.55243817
BornOffset = 2.462811043694508E-02
Radii = vanDerWaalsRadiiD3 {}
Descreening = Values {
H = 0.71893869
C = 0.74298311
N = 0.90261230
O = 0.75369019

}

2.4. HAMILTONIAN 61

SASA {
ProbeRadius = 1.843075777670416
Radii = vanDerWaalsRadiiD3 {}
SurfaceTension = Values {
H = -3.34983060E-01
C = -7.47690650E-01
N = -2.31291292E+-00
O = 9.17979110E-01
}

}
HBondCorr = Yes

HBondStrength = Values {
H = -7.172800544988973E-02
C = -2.548469535762511E-03
N = -1.976849501504001E-02
O = -8.462476828587280E-03

Charge Model 5

The charge model 5 (CM5)[41] can be used to correct partial charges by

ngS =ga+ ZDA’B exp[—a(RAB —RCAOV —R]%OV] (2.5)
B

The pairwise parameters Da_p are fixed to the original published ones, while the exponent ¢ and
the covalent radii RY" default to the published parameters but can be adjusted in the input.

alpha r 2.474 1/AA
Radii m atomicRadii{}
Cutoff r 30.0

alpha [1/length] Exponent of the CM5 correction.

Radii Atomic covalent radii for each species, either takes AtomicRadii{} for default atomic radii[42]
(can be overwritten) or requires to provide Values{} for all species. Both methods accept
[length] units.

Cutoff [length] Real space cutoff for the calculation of the CM5 correction.

CM5 {
Alpha = 1.30918451402600
Radii = AtomicRad {}

}

62 CHAPTER 2. INPUT FOR DFTB*XT

Solvent area model

The non-polar solvation free energy can be estimated from the solvent accessible surface area
(SASA) by
AGnon—polar = Z YAOA (26)
A

where 7 is the surface tension and G4 is the accessible surface area of each atom. To calculate the
latter, the molecule is assumed as a convolution of spheres which is probed by a probe sphere rolled
around the surface. Here a smooth numerical integration approach is employed.[43]

To use the non-polar surface area model in an calculation use the SASA{} method in the input to
Solvation. This model is currently only available for finite systems.

ProbeRadius r

Smoothing r 0.3 AA

Offset r 2.0 AA

Tolerance r 1.0e-6

AngularGrid i 230

Radii m vanDerWaalsRadiiD3
SurfaceTension m

ProbeRadius [length] Radius of the probe sphere used to determine the accessible surface area.
Smoothing [length] Smoothing parameter for numerical integration.

Offset [length] This offset value is added on the realspace cutoff radius for the neighbourlist gen-
eration. The realspace cutoff is determined automatically from the probe radius, the largest
atomic radius and the smoothing parameter.

Tolerance Minimal value of surface area contribution of a grid point to be accounted for as SASA.

AngularGrid Size of the angular Lebedev—Laikov integration grid.[44] The grid size mainly de-
termines the computational cost of evaluating the accessible surface area, too small grid sizes
can lead to significant errors due to missing rotational invariance. A safe choice should be
230 grid points per atom. Possible values are 6, 14, 26, 38, 50, 74, 86, 110, 146, 170, 194,
230, 266, 302, 350, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470,
3890, 4334, 4802, 5294, 5810.

Radii Atomic radii for each element, either takes VanDerWaalsRadiiD3{} for DFT-D3 van-der-
Waals radii (can be overwritten) or requires to provide Values{} for all species. Both methods
accept [length] units.

SurfaceTension Surface tension parameter for each species in dyn/cm.

Hamiltonian = DFTB {
Solvation = SASA { # GFN1-xTB/GBSA(Toluene)

ProbeRadius [AA] = 1.59772343
Smoothing [AA] = 0.3
Offset [AA] = 2
AngularGrid = 230
Radii = vanDerWaalsRadiiD3 {}
SurfaceTension = Values {

2.4. HAMILTONIAN 63

H = -1.52312760
C =-2.92375089
O = 0.79482640

2.4.13 Halogen corrections

The HalogenXCorr keyword includes the halogen correction of Ref. [45]. This is fitted for the
DFTB3-D3 model and the 3ob-3-1 parameter set. The correction is only relevant for systems in-
cluding interactions between {O,N}—{Cl,Br,I} pairs of atoms.

2.4.14 Hydrogen corrections

There are currently two available methods to correct hydrogen interactions (mainly hydrogen bonds)
in the HCorrection environment:

Damping

The Damping method modifies the short range contribution to the SCC interaction between atoms
A and B with the damping factor
_<M)§ 2
e 2 AB

provided that at least one of the two atoms is hydrogen [37, 38]. (U, and Up; are the Hubbard
U values of the two atoms for the /-shell, r4p is the distance between the atoms.) An atom is
considered to be a hydrogen-like atom, if its mass (stored in the appropriate homonuclear SK-file)
is less than 3.5 amu. The Exponent keyword in this environment sets the parameter { for the short
range damping:

HCorrection = Damping {
Exponent = 4.05

}

Table 2 of reference [37] gives suggested values of the exponent for different DFTB2 and DFTB3
models applied to light atoms bonded to hydrogen.

DFTB3-D3H5

DFTB3-D3H5 [34] is a variant of DFTB3 with additional corrections for non-covalent interactions
(dispersion and hydrogen bonds). It consists of a third-order DFTB calculation using the 30B
parameter set, but where the gamma-function damping (Damping method above) is replaced by
the HS correction and an additional D3 dispersion correction in included. This method also in-
cludes a repulsive term which is added to prevent unphysically close approach of pairs of hydrogen
atoms [35].

Setting the HCorrection environment to H5{} activates this correction for hydrogen bonds [34]. If
no additional parameters are provided in the input, suitable values for H-{ O,N,S} systems are used
(the correction was developed for the DFTB3/30B model and parameters).

64 CHAPTER 2. INPUT FOR DFTB*XT

HCorrection = H5 {}

Note: It was found that DFTB3 overestimates the strength of H-bonds involving the terminal nitro-
gen of an azide group, and the published results in Ref. [34] were obtained with the H5 correction
switched off for these specific atoms. To reproduce this behavior in a system containing nitrogen
in several environments, a new atom type with a different name but the same DFTB parameters can
be used for specific N atoms to which the correction should not be applied.

If you want to specify the parameters manually, H5 accepts following options, corresponding to
terms in Ref. [34]:

RScaling r 0.714
WScaling r 0.25
H5Scaling m

RScaling Global scaling factor, s,, when calculating the position of the correcting gaussian func-
tions:

ro = 8y (rvaw (X) +rvaw(H)).

WScaling Global scaling factor, sy, when calculating the width of the correcting gaussian func-
tions. The full-width at at half-maximum of the gaussian, w, is normalised to be 1 for a unit
value of WScaling:

Sw (rvaw (X) + rvaw (H))
2/21n2 '

H5Scaling Atom type specific scaling pre-factor, kyy, of the correcting gaussian functions when
calculating the SCC-interaction:

2
r — T
')6‘({51 = '}/XH <1 +kXHeXP <_(XI;M}20)>> .

You will have to specify one value for each of the chemical species you would like to correct
(see the example below). Explicitly setting a negative value (e.g. -1.0) for a given atom type
switches off the correction for hydrogen bonds involving that type of atom. In the special
cases of N, O or S, if you do not specify a value (and do not disable the contribution by using
-1.0), the default value from the reference paper will be used [34]. For any other omitted
atom types, the code defaults to a choice of -1.0 (no correction).

w =

Hamiltonian = DFTB {

HCorrection = H5 {
RScaling = 0.714
WScaling = 0.25

H5Scaling {
O =0.06
N =0.18
S=021

}
}

2.4. HAMILTONIAN 65

Note: The van der Waals radii (rygw) of atoms are also required. DFTB™* stores these for most
of the periodic table, but for cases that are not available their contribution to this correction are
neglected.

For a DFTB3-D3HS5 calculation, a specific parametrization of the D3 dispersion has to be used.
In addition to setting up appropriate values of the D3 parameters, as discussed in Ref. [34], the
hydrogen—hydrogen repulsion of Ref. [35] has to also be activated. The complete input is:

Hamiltonian = DFTB {

Dispersion = DftD3 {
Damping = ZeroDamping {

sr6 = 1.25
alpha6 = 29.61
}
s6 = 1.0
s8 = 0.49

HHRepulsion = Yes
}

2.4.15 RangeSeparated

The RangeSeparated keyword specifies the use of a range separated hybrid functional. Currently,
only the long-range corrected hybrid functional (LC) [46, 47] is implemented. There, the electro-
static interaction is split up into long and short ranged components according to

1 1 _efa)r e*wr

r r r

)

with the range-separation parameter @, which is set in the Slater-Koster files. The option should
only be used with corresponding parameter sets created for use with long-range correction.

Note: The present release does not yet support long-range corrected excited states calculations with
LC-TD-DFTB, and the RangeSeparated keyword can, therefore, not be used in conjunction with
the ExcitedState block.

The RangeSeparated keyword expects either None (default — no use of range-separated hybrid
functional) or the LC{} block as value. Latter enables the following option:

| Screening m Thresholded {}

Screening Choice of the screening method. The following choices are allowed:

Thresholded {} Screening according to estimated magnitude of terms. This is the recom-
mended choice for speed and accuracy but does not support all of the cases (restarting
and spin polarisation).
Threshold r le-6
CutoffReduction r 0.0

66 CHAPTER 2. INPUT FOR DFTB*XT

Threashold Threashold, below which elements are considered to be zero.

CutoffReduction [length] Reduces the spatial cutoff, beyond which the overlap be-
tween atoms is considered to be zero. This can be used as an additional tweak to
speed up the LC-calculation, but make sure first, that your results do not change
considerably. Default: 0.0 — no reduction, using the cutoff from the SK-files.

NeighbourBased Uses a purely neighbour-list based algorithm. This algorithm is usually
considerably slower than the Thresholded.

] CutoffReduction r 0.0

CutoffReduction [length] See description in the Thresholded block.

MatrixBased Uses a matrix-matrix multiplication based algorithm. This can be faster than
other two algorithms.

Example for thresholded screening with customised threshold value.

RangeSeparated = LC {
Screening = Thresholded {
Threshold = 1e-5

}
}

Example for neighbour list based screening with customised cutoff reduction:

RangeSeparated = LC {
Screening = NeighbourBased {
CutoffReduction [AA] = 2.0

}
}

Example for matrix-matrix multiplication based method:

RangeSeparated = LC {
Screening = MatrixBased {}

}

2.4.16 On site corrections

This block enables corrections for on-site matrix elements which improve the description of multi-
centre integrals [48] leading to, for example, improved hydrogen-bond energies [13].

For each chemical species, the spin-same-spin and spin-different-spin constants should be specified
for all combinations of atomic shells. note: the matrix of constants is symmetric and the purely
s-with-s entries are zero (the code ignores their value due to symmetry).

Example:

OnSiteCorrection= {
same spin oxygen

2.4. HAMILTONIAN 67

Ouu = {0.00000 0.08672
0.08672 -0.00523}

hetero-spin oxygen

Oud = {0.00000 0.14969
0.14969 0.03834}

H all zero
Huu = {0}
Hud = {0}

Some on-site constants are given in appendix H.

2.4.17 Differentiation

Calculations of forces currently require the numerical derivatives of the overlap and non-self-
consistent Hamiltonian. This environment controls how these derivatives are evaluated.

Note: In earlier DFTB+ versions (up to version 1.2), differentiation was done using finite difference
derivatives with a step size of 0.01 atomic units. If you want to reproduce old results, choose the
FiniteDiff method and set the step size explicitly to this value.

FiniteDiff{}

Finite difference derivatives with a specified step size

| Delta r epsilon'/*

Delta [length] Step size

Richardson{}

Extrapolation of finite difference via Richardson’s deferred approach to the limit (in principle the
most accurate of the currently available choices).

2.4.18 ForceEvaluation

Chooses the method for evaluating the electronic contribution to the forces.

"traditional’ Uses the “traditional” DFTB-force expression, given for example, in Ref. [49].

"dynamics’ Force expression from Ref. [11]. This choice should be used if forces are being calcu-
lated with non-converged charges (e.g. when doing XLBOMD dynamics). Note: this force
expression is only compatible with the Fermi filling (see keyword Filling, p. 42.)

"dynamicsTO’ Simplified dynamic force expression valid for electronic temperature 7 = 0 K [11].
This choice should be used if forces are calculated with non-converged charges and the elec-
tronic temperature is zero (e.g. when doing XLBOMD dynamics at 7 = 0 K).

68 CHAPTER 2. INPUT FOR DFTB*XT

Note: that XLBOMD calculations (Section 2.3.6) are not able to use the 'traditional’ forces.

Example:

ForceEvaluation = 'dynamics’

2.5 Options

This block collects some global options for the run.

Verbosity 1 51
WriteAutotest Tag 1 No
WriteDetailedXML 1 No
WriteResultsTag 1 No
WriteDetailedOut 1 Yes
RestartFrequency i Driver = {}, SCC = Yes 20
RandomSeed i 0
MinimiseMemoryUsage 1 No
TimingVerbosity i 0
ShowFoldedCoords 1 Periodic = Yes No
WriteHS 1 No
WriteRealHS 1 No
ReadChargesAsText 1 ReadlInitialCharges = Yes No
WriteChargesAsText 1 No
SkipChargeTest 1 ReadlInitialCharges = Yes No

Verbosity This parameter controls the amount of output messages globally and takes values rang-
ing from 1 to 100.

WriteAutotest Tag Turns the creation of the autotest.tag file on and off. (This file can get quite
big and is only needed for the autotesting framework.)

WriteDetailed XML Turns the creation of the detailed.xml file on and off. (The detailed.xml file
is needed among others by the waveplot utility for visualising molecular orbitals.)

WriteResultsTag Turns the creation of the results.tag file on and off. (That file is used by several
utilities processing the results of DFTB™.) For a description of the file format see p. 82.

WriteDetailedOut Controls the creation of the file detailed.out (see p. 81). Since this contains
the detailed information about the last step of your run, you shouldn’t turn it off without good
reasons.

RestartFrequency Specifies the interval at which charge restart information should be written to
disc for static SCC calculations. Setting it to O prevents the storage of restart information. If
running an MD calculation, see also section 2.3.6 regarding MDRestartFrequency.

RandomSeed Sets the seed for the random number generator. The value 0 causes random initial-
isation. (This value can be used to reproduce earlier MD calculations by setting the initial
seed to the same value.)

MinimiseMemoryUsage Tries to minimise memory usage by storing various matrices on disc
instead of keeping them in memory. Set it to Yes to reduce the memory requirement for

2.6. ANALYSIS 69

calculations with many k-points or spin polarisation. Note: Currently this option has no
effect and you will get a warning if setting it to be Yes.

TimingVerbosity Level of information regarding CPU and wall clock timings of sections of the
code, higher values becoming more verbose. Setting this parameter to O or below supresses
any information being printed (default). Setting it to -1 includes all measured timings.

ShowFoldedCoords Print coordinates folded back into the central cell, so if an atom moves out-
side the central cell it will reappear on the opposite side. The default behaviour is to use
unfolded coordinates in the output. (Please note, that this option only influences how the
coordinates are printed and written, it does not change the way, periodic systems are treated
internally.)

WriteHS Instructs the program to build the square Hamiltonian and overlap matrices and write
them to files. The output files are hamsqrN.dat and oversqr.dat, where N enumerates the
spin channels. For a detailed description of the file format see p. 83.

Note: If either of the options WriteHS or WriteRealHS are set to Yes, the program only builds
the matrices, writes them to disc and then stops immediately. No diagonalisation, no SCC-
cycles or geometry optimisation steps are carried out. You can use the ReadInitialCharges
option to build the Hamiltonian with a previously converged charge distribution.

WriteRealHS Instructs the program to build the real space (sparse) Hamiltonian and overlap ma-
trices and write them to files. The output files are hamreal.dat and overreal.dat. For a detailed
description of the file format see p. §83.

Note: If either of the options WriteHS or WriteRealHS are set to Yes, the program only builds
the matrices, writes them to disc and then stops immediately. No diagonalisation, no SCC-
cycles or geometry optimisation steps are carried out. You can use the ReadlnitialCharges
option to build the Hamiltonian with a previously converged charge distribution.

ReadChargesAsText If No, the program expects the file charges.bin to contain starting charges
stored in binary. If Yes, then charges.dat should contain a text file of this data. See section
3.7.

WriteChargesAsText If No, the program stores charges in the binary file charges.bin, while if
Yes then charges.dat contains text of this data. See section 3.7.

SkipChargeTest If Yes, testing of whether the charges read from file match the total charge (and
magnetisation) specified in the DFTB™ input (if relevant) is performed. Skipping this test
(setting to No) may be useful if restarting from a charges generated for a similar system with
slightly different total charge or magnetisation. Similarly, in the event of serious instabil-
ities in the SCC cycle, the generated charge restart file may fall outside of the check-sum
tolerances, hence this option allows a re-start. Finally, in the case of user edited charges.dat
file (see section 3.7), the check-sum this option removed the requirement that the checksum
values in the file match the charges.

2.6 Analysis

This block collects some options to analyse the results of the calculation and/or calculate properties.

70 CHAPTER 2. INPUT FOR DFTB*XT

AtomResolvedEnergies 1 No

MullikenAnalysis 1 Yes

CM5 m MullikenAnalysis = Yes 61
ProjectStates m {}

Localise m {}

WriteEigenvectors 1 No

EigenvectorsAsText 1 WriteEigenvectors = Yes No

WriteBandOut 1 Yes

CalculateForces 1 No
ElectrostaticPotential m SCC = Yes {} 72

AtomResolvedEnergies Specifies whether the contribution of the individual atoms to the total
energies should be displayed or not.

MullikenAnalysis If Yes, the results of a Mulliken analysis of the system is given.

CM5 If present the charge model 5 (CM5)[41] corrected atomic partial charges will be written.

ProjectStates

ProjectStates evaluates the Mulliken projection of electronic states onto specific regions of
the system being modelled (partial density of states — PDOS). The format of the projected
data files is similar to band.out, but the second column is the fraction of the state within that
region, instead of its occupation number (for non-collinear and spin-orbit calculations, three
additional columns for the magnetisation of the state are also given).

Each region for projection is specified within a Region{} block, with the following options

Atoms >ils)+ -
ShellResolved 1 No
OrbitalResolved 1 No

Label s "regioni"

ShellResolved Project onto separate atomic shells of the region. These are taken in order
of increasing shell number of the atoms. ShellResolved = Yes is only allowed, if all the
selected atoms are of the same type.

OrbitalResolved Project onto separate atomic orbitals of the region. These are taken in
order of increasing shell number of the atoms. As with ShellResolved, this only allowed,
if all the selected atoms are of the same type.

Atoms Specification of the atoms over which to make the projection.. Atoms are specified
in the same way as MovedAtoms in section 2.3.1.)

Label Prefix of the label for the resulting file of data for this region. The default is “re-
gioni.out” where i is the number of the region in the input. In the case that ShellResolved
= Yes, the shell index is appended, so that files with names “Label.j.out” are written. For
OrbitalResolved = Yes, the shell and then m-value is appended, so that files with names
“Label.j.m.out” are written.

Examples:

ProjectStates = {

Region = { # first region

2.6. ANALYSIS 71

Atoms = 23:25 27 # atoms 23, 24, 25 and 27

}

Region = {
Atoms = N # All nitrogen atoms
ShellResolved = Yes # s and p shells separated instead of atomic PDOS
Label = "N" # files N.1.out and N.2.out for s and p states

}
}

Localise

Convert the single particle states of the calculation to localised orbitals via a unitary transfor-
mation. Localised orbitals span the same states as the occupied orbitals, so are equivalent to
the usual valence band states, but are more localised in space. Currently only PipekMezey
localisation is supported (but not for non-collinear or spin-orbit calculations).

Pipek-Mezey [50] localisation transforms the occupied orbitals such that the square of the
Mulliken charges for each orbital is maximised. The resulting localised states are output as
localOrbs.out and localOrbs.bin following the format given in appendix 3.6 for eigenvec.out
and eigenvec.bin.

Tolerance r 1E-4
Maxlterations i1 100

Tolerance Cut off for rotations in the localisation process.

Maxlterations Maximum number of total sweeps to perform.

For systems with non-gamma-point k-points, no further options are available.

Analysis = {
Localise = {
PipekMezey = {
These are the default options, which are also set if the bracket is left empty.
Tolerance = 1.0E-4
Maxlterations = 100

}
}
}

For molecular and gamma point periodic calculations there are two implementations avail-
able, Dense = Yes will use the O(n*) scaling conventional algorithm, while Dense = No, uses
the default sparse method which may have better scaling properties.

Dense 1 No
SparseTolerances r+ Dense = No 1E-1 1E-2 1E-6 1E-12

Dense Selects the conventional method (Yes) using Jacobi sweeps over all orbital pairs or
(No) uses the default sparse method.

SparseTolerances The sparse method introduces support regions during evaluation to in-
crease performance, and these requires a set of tolerances to determine the regions to be
used (these are listed in decreasing order, i.e., with tighter tolerances as the localisation
proceeds).

72 CHAPTER 2. INPUT FOR DFTB*XT
WriteEigenvectors Specifies, if eigenvectors should be printed in eigenvec.bin. For a description
of the file format see p. 84.

EigenvectorsAsText If eigenvectors are being written, specifies if a text version of the data should
be printed in eigenvec.out. For a description of the file format see p. 84.

WriteBandOut Controls the creation of the file band.out which contains the band structure in a
more or less human friendly format.

CalculateForces If Yes, forces are reported, even if not needed for the actual calculation (e.g.
static geometry calculation).

ElectrostaticPotential

Evaluates the electrostatic potential at specified points in space for SCC calculations. This data is
accumulated in a specified text file.

OutputFile S "ESP.dat"
AppendFile 1 MD or geometry optimisation No
Softening r 1E-6
Points (3r)+ Grid not set {}

Grid m Points not set {}

OutputFile Text file to store the potential. If external electric fields are present, an additional
column gives their values. See p. 85 for a description of the file.

AppendFile If running calculations with multiple geometries, should the OutputFile be appended
or only contain the last potential information?

Softening [length] Modifies the plotted potential to remove the r = 0 divergence of !/, by setting €
and instead plotting ! /v/2+¢2. Internal potential calculations are unaffected, only the exported
data.

Points [length] List of cartesian points at which to evaluate the electrostatic field. In the case
Periodic = Yes, the modifier "F" may instead be used to specify the points as fractions of the
lattice vectors.

Grid [length] Specification of a regular 1, 2 or 3 dimensional grid of points. In the case Periodic
= Yes, the modifier "F" may instead be used to specify the points as fractions of the lattice

vectors.
GridPoints 3i
Origin 3r
Spacing 3r
Directions 9r Modifier not F 100010001

Spacing Separation between points in each direction. This inherits the modifier for Grid.
Origin Location of first point in the grid. This inherits the modifier for Grid.

GridPoints Number of points in each of the three direction of the grid (a value of 1 places
all points at the Origin of that direction).

Directions Set of 3 cartesian vectors along which the grid will become aligned. This can
rotate, skew, etfc. the grid. The vectors are internally normalised, but must be indepen-
dent.

2.7. EXCITEDSTATE 73

2.7 ExcitedState

This block collects some options to calculate excited states.

Casida p SCC = Yes {}
PP-RPA p SCC = Yes {}

2.7.1 Casida

This tag contains the specifications for a time-dependent DFTB calculation, based on linear re-
sponse theory [51].

Note: the DFTB™ binary must be compiled with linear response calculations enabled to make use
of these features (the ARPACK [52] library or ARPACK-ng [53] is required).

The calculation of vertical excitation energies and the corresponding oscillator strengths as well as
excited state geometry optimisation can be performed with these options, details of the resulting
output files are given in appendix 3.10. Linear response theory is currently implemented only for
the SCC-DFTB level of theory and molecular systems.? Excitations can be calculated for fractional
occupations and collinear spin-polarisation, but forces (and hence geometry optimisation or MD)
are only available for spin-unpolarised systems with no fractional occupations. The specifications
for this block have the following properties:

NrOfExcitations i -
StateOflnterest i 0
Symmetry s SpinPolarisation = {} -
EnergyWindow r FORTRAN HUGE()
OscillatorWindow r -1
WriteTransitions 1 No
WriteSPTransitions 1 No
WriteMulliken 1 No
WriteCoefficients 1 No
WriteEigenvectors 1 No
TotalStateCoeffs 1 WriteCoefficients = Yes No
WriteXplusY 1 No
WriteTransitionDipole 1 No
WriteStatusArnoldi 1 No
TestArnoldi 1 No
ExcitedStateForces 1 CalculateForces = Yes Yes
CacheCharges 1 Yes

NrOfExcitations Specifies the number of vertical excitation energies to be computed for every
symmetry (singlet or triplet). It is recommended that a value slightly greater than the actual
number of the states of interest is specified (the eigenvalue solver may not converge to the
right roots otherwise).

StateOflInterest Specifies the target excited state or states that should be calculated. These are
numbered from the first (lowest) excited state as 1, and so on. If the absorption spectrum at

SExcitation energies can also be calculated for gamma point periodic systems, but will be incorrect for delocalised
excitations or for charge transfer-type excited states.

74 CHAPTER 2. INPUT FOR DFTB*XT

a given geometry is required (i.e., a single-point calculation), this parameter should be set to
zero (default) and the Driver section (2.3) should be left empty (forces will not be available).
A value less than 0 requests that the state with the largest dipole transition moment be found
(again a single-point calculation).

LR I3

Symmetry Specifies the spin symmetry of the excited states being computed: “singlet”, “triplet”
or “both”. This tag is only applicable for spin restricted calculation. For calculations in the
“triplet” or “both” cases, SpinConstants must be supplied (see p. 38).

EnergyWindow [energy] Energy range above the last transition at NrOfExcitations to be included
in excited state spectrum calculation.

OscillatorWindow [Dipole moment] Screening cut-off below which single particle transitions are
neglected in excitation spectra calculations. This selects from states above the top of the
EnergyWindow (if present). This keyword should not be used if calculating forces or other
excited state properties.

WriteTransitions If set to Yes, the file TRA.DAT is created. This file contains a description of
each requested excited state in terms of its single-particle transitions.

WriteSPTransitions If set to Yes, the file SPX.DAT is created, which contains the spectrum at
the uncoupled DFTB level (i.e. the single-particle excitations).

WriteMulliken If set to Yes, the files XCH.DAT and XREST.DAT are created. The former contains
atom-resolved Mulliken (gross) charges for the excited state of interest, the latter the excited-
state dipole moment of the state.

WriteCoefficients If set to Yes, the file COEE.DAT is created. This file contains the complex
eigenvectors (molecular orbital coefficient) for the excited state of interest. They are derived
from the relaxed excited state density matrix.

WriteEigenvectors If set to Yes, the file excitedOrbs.bin is created. This file contains the natural
orbitals for the specified excited state.

TotalStateCoeffs Option to control data from WriteCoefficients or WriteEigenvectors. If set to
No the total charge density of the output orbitals corresponds to the change in charge from
the ground to excited state. If set to Yes instead it corresponds to the total charge density in
the excited state.

WriteXplusY If set to Yes, the file XplusY.DAT is created. This file contains the RPA vector
(X +Y)IZ for all excited states (c.f., Eqn. (18) in Ref. [54]).

WriteTransitionDipole If set to Yes, the file TDP.DAT is created. This file contains the Mulliken
transition dipole for each excited state.

WriteStatusArnoldi If set to Yes, the file ARPACK.DAT is created, which allows the user to
follow the progress of the Arnoldi diagonalisation.

TestArnoldi If set to Yes, the file TEST_ARPACK.DAT is created, which gives data on the quality
of the resulting eigenstates.

ExcitedStateForces If set to Yes, evaluated forces include the contributions from an excited state
of interest. By default, it is set to Yes if forces are being calculated (for example in geom-
etry optimisation) and to No otherwise. By setting it explicitly to No, you can calculate the
excitations during a molecular dynamics simulation that is being driven by the ground state
forces only.

2.7. EXCITEDSTATE 75

CacheCharges If set to No, transition charges are calculated on the fly during the excited states
calculation, instead of being cached. This makes the calculation considerably slower, but can
help to decrease memory use substantially, if you are short on memory.

2.7.2 PP-RPA

This tag contains the specifications for the calculation of excitation energies using the particle-
particle random phase approximation (pp-RPA) [55]. This approach, unlike time-dependent DFTB,
allows the computation of double and charge-transfer transitions. However it has the limitation that
the computed excitations have to involve, at least partially, the highest occupied molecular orbital
(HOMO) of the system.

For the computation of the excitation energies of a neutral N-electron system, one needs to set up
a ground state calculation for the two-electron deficient (N — 2) system, i.e. a net Charge = +2.0
calculation. Please note that if Charge is set to 0.0 (the default value), the obtained transition
energies will correspond to a net negative —2 charged system (i.e. N + 2 electrons). The system of
interest must be closed-shell, therefore the calculation must also be spin-restricted and performed
for an even number of electrons.

The pp-RPA method is currently implemented only for SCC-DFTB level excitations, but can be
performed on top of both SCC-DFTB or range-separated reference ground state calculations. The
SCC-DFTB calculations can be performed for molecular or gamma point periodic systems, but the
range-separated calculations can only use molecular boundary conditions.

The specifications for this block have the following properties:

NrOfExcitations i -
Symmetry S -
NrOfVirtualStates i 0
TammDancoff 1 No
HHubbard p -

NrOfExcitations Specifies the number of vertical excitation energies to be computed for each
symmetry (singlet or triplet).

Symmetry Specifies the spin symmetry of the excited states being computed: singlet, triplet or
both. Please note that, triplet and both are effectively similar, as both singlet and triplet
excitation energies will be printed out if either of these keywords are used.

NrOfVirtualStates Optional orbital constraint to speed up the calculation. It specifies the number
of virtual states entering the pp-RPA equation. If set to zero or greater than the total number

of virtual states of the system no constraint will be applied.

TammDancoff If set to Yes, the Tamm-Dancoff approximation will be employed. This will speed
up the calculation.

HHubbard Hubbard-like parameters for each atom type including only the Hartree kernel. Values
of some of these parameters are given in appendix I.

The output of the pp-RPA calculation are described in section 3.11.

76 CHAPTER 2. INPUT FOR DFTB*XT
2.8 REKS

This block collects some options to calculate REKS in the context of DFTB. The Reks keyword
expects either None (default — no use of REKS calculation) or the SSR22{} block as value.

’ SSR22 p SCC = Yes, SpinPolarisation = {}, SpinConstants # {} None

2.8.1 SSR22

This tag contains the specifications for a DFTB/SSR(2,2) calculation [56], based on ensemble DFT
theory.

Note: the DFTB™ binary can be compiled with OpenMP (not MPI) parallelization and DFTB/SSR
calculation is not compatible with time-dependent DFTB calculation. In addition, it is not compat-
ible with spin-polarisation, but it requires spin constants to treat open-shell microstates.

In general, REKS calculation can be classified as single-state REKS, SA-REKS and SI-SA-REKS.
In single-state REKS, only ground state is calculated and it can treat the state with multireference
character. SA-REKS and SI-SA-REKS can calculate the vertical excitation energies. The difference
is that the state-interaction term is considered in SI-SA-REKS so that more accurate states can be
generated. The corresponding oscillator strengths as well as excited state geometry optimisation
can be performed with these options, details of the resulting output files are given in appendix 3.12.

In the context of DFTB, current REKS calculation is compatible with following functionalities. The
range-separated functional, external point charges and dispersion corrections can be calculated with
single-state REKS, SA-REKS or SI-SA-REKS. For the periodic system, only gamma point sam-
pling is supported with REKS. Especially, the stress evaluation and lattice optimisation is possible
with only single-state REKS. The specifications for this block have the following properties:

Energy m {}
TargetState i 1
H n I
TargetMicrostate i Functional 7£ { "PPS" 1}, 0
Statelnteractions = No
ReadEigenvectors 1 No
FonMaxlter i 20
Shift r 0.3
SpinTuning (r)* {3
H [} 1l
TransitionDipole 1 Functional 7= { "PPST }, No

TargetMicrostate = 0

Gradient m ConjugateGradient {}
1
1

RelaxedDensity No
Functional # { "PPS" },

No
_ ~ Statelnteractions = Yes
VerbositylLevel i 1

NonAdiabaticCoupling

Energy Choice of energy evaluation in REKS method. This Energy block has following options:

Functional (s)*
IncludeAllStates 1 No
Statelnteractions 1 No

Functional Specifies the minimized energy functional in DFTB/SSR. This keyword reads a

2.8. REKS 7

block consisted of the energy functionals that you want to include in the calculation. In
DFTB/SSR(2,2), there are two possible choices for the minimzied energy functionals.
One is PPS and the other is (PPS+0OSS)/2. The former represents single-state REKS and
the latter shows SA-REKS or SI-SA-REKS. The detailed form of the block is shown in
below examples. The inclusion of state-interaction terms is determined by Statelnter-
actions.

IncludeAllStates If set to Yes, all computable energy states from current energy functionals
are included for SA-REKS or SI-SA-REKS calculations. When you calculate single-
state REKS, this option does not affect the result of calculation. The PPS and OSS
states are calculated when this option sets to No, while the additional DES state can be
included if this sets to Yes. If you want to the doubly-excited configuration, please set to
Yes. The detailed explanation about PPS, OSS and DES states is given in the Ref. [56]

Statelnteractions If set to Yes, the state-interaction terms between SA-REKS states is in-
cluded, thus it generates SI-SA-REKS states. In general, SI-SA-REKS state can provide
more reliable state when you want to compute the excited states.

TargetState Specifies the target state that should be calculated. These are numbered from the
ground state as 1, and so on. Note that the ordering of this option is different with the option
StateOflInterest in time-dependent DFTB calculation.

TargetMicrostate Specifies the target microstate that should be calculated. The electronic con-
figuration is given in the Ref. [56] or the source code of DFTB™. In SSR(2,2), fifth microstate
is triplet configuration, thus this microstate can be roughly considered as triplet state.

ReadEigenvectors If set to Yes, the initial molecular orbitals are read from the eigenvec.bin file.
If not, the initial orbitals are obtained from the diagonalization of non-SCC Hamiltonian.
Note that this option is not completely implemented, so you should set this option to No.

FonMaxlter Specifies the maximum number of iterations used in the optimization of fractional oc-
cupation numbers. In general, the value of 20 is enough to converge the fractional occupation
numbers in SCC cycle.

Shift Specifies the level shift value used in SCC cycle. The shift value should be increased to
converge the SCC cycle when the orbital energies of the active orbitals are close to each
other.

SpinTuning Specifies the scaling constants for atomic spin constants. DFTB/SSR sometimes
shows wrong spin contribution for triplet microstate, thus the scaling of atomic spin con-
stants are needed to generate correct spin contribution for each microstate. The standard to
determine the scaling constants is provided in the Ref. [56]. The number of elements of
SpinTuning block becomes the number of atomic species, and the ordering of the elements is
same as the ordering of atomic species in input geometry file.

TransitionDipole If set to Yes, the file tdp.dat is created. This file contains a description of tran-
sition dipole moment between the electronic states in SA-REKS or SI-SA-REKS.

Gradient Choice of gradient solver used in CP-REKS equations. This Gradient block has the
following choices:

ConjugateGradient Uses a congugate-gradient based algorithm. This algorithm is usually
recommended since it is considerably faster than other algorithms.

78 CHAPTER 2. INPUT FOR DFTB*XT

CGmaxlter i 20
Tolerance r le-8
Preconditioner 1 No
SaveMemory 1 No

CGmaxlter Specifies the maximum number of iterations used in the conjugate-gradient
based algorithm. In general, the value of 20 is enough to solve the CP-REKS equa-
tions.

Tolerance Specifies the tolerance used in the conjugate-gradient based algorithm.

Preconditioner If set to Yes, it uses a preconditiner in the conjugate-gradient based
algorithm. In general, the convergence speed is increased when this option sets to
Yes, thus this option is recommended.

SaveMemory If set to Yes, some variables (an orbital hessian matrix and the H-xc
kernel) which need large memory allocation are saved in the memory. If these
variables are saved, then the computational speed also increases but it shows large

memory allocation, increasing as O(Nﬁ'asis). If set to No, the CP-REKS equations

are solved without saving these variables, thus it is relatively slower than the case
that you set to Yes. In general, No option is recommended for large systems.

Direct Uses a direct matrix-inversion multiplication algorithm. This algorithm is usually
considerably slow.

RelaxedDensity If set to Yes, the file relaxed_charge.dat is created. This file contains a description
of relaxed charges for TargetState or TargetMicrostate. The relaxed charges can be used
with external point charges in QM/MM calculations.

NonAdiabaticCoupling If set to Yes, the nonadiabatic couplings between SI-SA-REKS states are
calculated. This option cannot be used in single-state REKS or SA-REKS state.

VerbositylLevel Specifies the printing level in standard output. This option determines the output
up to energy information (VerbosityLevel = 0), gradient information (VerbosityLevel = 1),
detailed information about SCC cycle and timing in gradient calculation (VerbositylLevel =
2).

Example for 3state SI-SA-REKS calculation with nonadiabatic couplings and modified spin con-
stants:

Reks = SSR22 {

Energy = {
Functional = { "PPS" "OSS" }
IncludeAllStates = Yes
Statelnteractions = Yes

}

TargetState = 2

TargetMicrostate = 0

ReadEigenvectors = No

FonMaxlter = 30

Shift = 0.3

SpinTuning ={3.03.0 }

Gradient = ConjugateGradient {
CGmaxlter = 100

2.9. PARSEROPTIONS 79

Tolerance = 1.0E-8
Preconditioner = Yes
SaveMemory = Yes
}
RelaxedDensity = Yes
NonAdiabaticCoupling = Yes
VerbosityLevel = 1

}

2.9 ParserOptions

This block contains the options, which are effecting only the behaviour of the HSD parser and are
not passed to the main program.

ParserVersion i current input version
WriteHSDInput 1 Yes
IgnoreUnprocessedNodes 1 No
StopAfterParsing 1 No

ParserVersion Version number of the input parser, which the input file was written for. If you are
using an input file, which was created for an older version of DFTB*, you should set it to
the parser version number of that code version. (The parser version number is printed at the
beginning of the program run to the standard output.) DFTB?* internally converts the input
to its current format. The processed input (written to dftb pin.hsd) is always in the current
format, and the ParserVersion property in it is always set to be the current parser version.

WriteHSDInput Specifies, if the processed input should be written out in HSD format. (You
shouldn’t turn it off without really good reasons.)

IgnoreUnprocessedNodes By default the code stops if it detects unused or erroneous keywords
in the input, which probably indicates error(s) in the input. This dangerous flag suspends
these checks. Use only for debugging purposes.

StopAfterParsing If set to Yes, the parser stops after processing the input and written out the
processed input to the disc. It can be used to make sanity checks on the input without starting
an actual calculation.

2.10 Parallel

This block contains the options, which are effecting the parallel behaviour of the code. They only
take effect, if the code was compiled with MPI-support.

Groups i1
UseOmpThreads 1 .false.
Blacs p {}

Groups Number of process groups. Specifying more than one process group enables parallelisa-
tion over k-points and spin, as processes in different process groups are working on different
k-points and spins at the same time. The number of process groups must be a divisor of the

80 CHAPTER 2. INPUT FOR DFTB*XT

total number of MPI-processes. Default: 1 (all processes work at the same k-point and spin
at a given time). Note that transport calculations between contacts are currently incompatible
with multiple process groups (see section 4).

UseOmpThreads Enables the usage of OpenMP-threads (hybrid MPI/OpenMP-parallelisation).
In order to prevent you from accidently running more processes and threads than appropriate
for your hardware, this feature is turned off by default. Consequently in this case the MPI-
parallelised binary will stop if the maximal number of OpenMP-threads is greater than one
when DFTB+ is started. (You can usually set the number of maximally allowed OpenMP-
threads by setting the OMP__NUM __THREADS environment variable in your shell.)

You can enable this option if you wish to run DFTB+ with hybrid parallelisation. You would
then typically start fewer MPI-processes than physical cores on each node and also set the
number of threads accordingly. This is currently an experimental feature in DFTB+ and is
recommended for experienced users only.

Blacs Contain BLACS specific settings. Currently only supports BlockSize, which specifies the
row and column block size for the block-cyclic distributions (with default size of 32).

Example:
Parallel {
Groups = 2
Blacs {
BlockSize = 64

}
}

Chapter 3

Output of DFTB*XT

This chapter contains the description of some of the output files of DFTB* where the output format
is not self documenting. Unless indicated otherwise, numbers in the output files are given in atomic
units (with Hartree as the energy unit).

3.1 band.out

This contains the band energies and occupation of levels in electron volts and electron charge units
as columns one and two. The file is printed if WriteBandOut = Yes (see section 2.6). Blocks of
numerical results start with a line which labels the k-point and spin channel for the energies.

See the DP_TOOLS package for utilities for converting the data in this file into band-structures and
density of states information suitable for plotting.

3.2 detailed.out

This file contains details of the total energy and its components, as well as optional information on
forces, atomic charges and other properties. It is intended for quick viewing, while values given to
more significant figures are available in results.tag.

Some of the information available in the file will also depend on the method being used in the
calculation. For example, not all electronic solvers make the ground state electronic entropy avail-
able, hence only the internal energy would be quoted. Similarly, while the free energy of the system
which when differentiated by atomic coordinates or boundary conditions gives the forces or stresses
(printed as Force related energy) this is not currently available for some types of non-equilibrium
transport calculations.

Some of the common energy results printed in this file are:

81

82 CHAPTER 3. OUTPUT OF DFTB*XT

TS Product of the electron entropy and
temperature

Total Electronic energy The non-SCC energy plus other
contributions to the electronic en-
ergy (SCC, spin, ...)

Repulsive energy The pairwise contribution to the to-
tal energy

Total energy Sum of electronic energy

Extrapolated to 0 Estimated zero temperature energy

if at finite temperatures
Total Mermin free energy | U — T'S, relevant free energy at fi-
nite temperatures

Force related energy Free energy relevant to forces in the
system

Gibbs free energy Energy corrected by —pV, i.e. the
pressure and volume

MD Kinetic Energy Kinetic energy of atoms in molecu-
lar dynamics

Total MD Energy Sum of finite temperature elec-
tronic, repulsive and atomic kinetic
energies

Where available the Fermi level u (i.e. the chemical potential of the electrons in the system) is also
printed. For systems with an externally fixed Fermi level (i.e. where the total charge can change),
this contribution is included in the Force related energy:

AE = +Gotal U,

but for calculations with fixed numbers of electrons it is not included in this energy. Note: The total
energy reference may not match your required case in some situations, for example a shift with
respect to the average electrostatic potential (in periodic cases) or whether the chemical potential
should be with respect to the valence band maximum may be needed (see for example the discussion
in Ref. [57]).

3.3 results.tag

This contains machine readable results labeled with the type and size of the data blocks. The results
are given in atomic units and are formatted as:

label ‘type:shape:

The variable type is real, complex, integer or logical. The shape information is

:ndim: size,sizes,. . .,S1Z€,qim:

where ndim is the number of dimensions, organised with the Fortran convention and of size size;
Xsizey Xsizey X. ...

In the special case of scalar variables the shape is :0:.

A typical example of mixed scalar and both one and two dimensional results would be similar to:

3.4. HAMSQRN.DAT, OVERSQR.DAT 83

mermin__energy ‘real:0:
-0.672967201447815E+000
total energy -real:0:
-0.672879398682698E+-000
forces :real:2:3,3
-0.243590222274811E+4-000 -0.199780753617099E-001 -0.000000000000000E+000
0.465478448963764E+000 -0.228550455811745E4-000 -0.000000000000000E+-000
-0.221888226688953E+000 0.248528531173455E+000 -0.000000000000000E+000
gross atomic_charges:real:1:3
0.171448741143825E+000 -0.254714832621691E4000 0.832660914778645E-001

3.4 hamsqrN.dat, oversqr.dat

The files hamsqrN.dat and oversqr.dat contain the square (folded) Hamiltonian and overlap matri-
ces. The number N in the filename hamrealN.dat indicates the spin channel. For spin unpolarised
calculation it is 1, for spin polarised calculation it is 1 and 2 for spin-up and spin-down, respectively
while for non-collinear spin it is charge, x, y and z for 1, 2, 3 and 4. Spin orbit is not currently
supported for this option.

Only non-comment lines (lines not starting with "#") are documented:

* Flag for signalling if matrix is real (REAL), number of orbitals in the system (NALLORB),
number of kpoints (NKPOINT). For non-periodic (cluster) calculations, the number of kpoints
is set to 1.

* For every k-point:

— Number of the k-point. For molecular (non-periodic) calculations only 1 k-point is
printed.

— The folded matrix for the given k-point. It consists of NALLORB lines x NALLORB
columns. If the matrix is not complex (REAL is F), every column contains two numbers
(real and imaginary part).

The files are produced if requested by WriteHS = Yes (see section 2.5).

3.5 hamrealN.dat, overreal.dat

The files hamrealN.dat and overreal.dat contain the real space Hamiltonian and overlap matrices.
The number N in the filename hamrealN.dat indicates the spin channel. For spin unpolarised cal-
culation it is 1, for spin polarised calculation it is 1 and 2 for spin-up and spin-down, respectively,
while for non-collinear spin it is charge, x, y and z for 1, 2, 3 and 4. Spin orbit is not currently
supported for this option.

Note: The sparse format contains only the "lower triangle" of the real space matrix. For more details
about the format and how to obtain the upper triangle elements, see reference [58]. Also note, that
for periodic systems the sparse format is based on the folded coordinates of the atoms, resulting in
translation vectors (ICELL) which look surprising at first glance.

Only non-comment lines (lines not starting with "#") are documented:

84 CHAPTER 3. OUTPUT OF DFTB*XT

* Number of atoms in the system (NATOM)
» For every atom:

— Atom number (IATOM), number of neighbours including the atom itself (NNEIGH),
number of orbitals on the atom (NORB)

* For every neighbour of every atom:

— Atom number (IATOM1), neighbour number (INEIGH), corresponding image atom to
the neighbour in the central cell (IATOM2F), coefficients of the translation vector be-
tween the neighbour and its corresponding image (ICELL(1), ICELL(2), ICELL(3)).
Between the coordinates of the neighbour ringign and the image atom riatomer the

relation
3

FINEIGH = FIATOM2F 1 Z ICELL(i)a;
i=1

holds, where a; are the lattice vectors of the supercell.

— The corresponding part of the sparse matrix. The data block consists of NORB(IAT1)
lines and NORB(IAT2F) columns.

The files are produced if requested by WriteRealHS = Yes (see section 2.5).

3.6 eigenvec.out, eigenvec.bin

These files contain the eigenvectors from the Hamiltonian, stored either as plain text (eigenvec.out)
or in the native binary format of your system (eigenvec.bin).

The plain text format file eigenvec.out contains a list of the values of the components of each
eigenvector for the basis functions of each atom. The atom number in the geometry, its chemical
type and the particular basis function are listed, followed by the relevant value from the current
eigenvector and then the Mulliken population for that basis function for that level. The particular
eigenvector, k-point and spin channel are listed at the start of each set of eigenvector data. In the
case of non-collinear spin, the format is generalised for spinor wavefunctions. Complex coefficients
for both the up and down parts of the spinors are given (instead of single eigenvector coefficient)
followed by four values — total charge, then (x,y,z) magnetisation.

The binary format file eigenvec.bin contains the (unique) runld of the DFTB+ simulation which
produced the output followed by the values of the eigenvectors. The eigenvector data is ordered so
that the individual components of the current eigenvector are stored, with subsequent eigenvectors
for that k-point following sequentially. All k-points for the current spin channel are printed in this
order, followed by the data for a second channel if spin polarised.

The files are produced if requested by setting WriteEigenvectors = Yes, with EigenvectorsAsText
being also required to produce the plain text file (see section 2.6 for details).

3.7 charges.bin / charges.dat

The file charges.bin contains the orbitally-resolved charges for each atom. In later versions of
DFTB?* this format includes a check sum for the total charge and magnetisation. In the case of

3.8. MD.OUT 85

orbital potentials (p. 47) the file also contains extra population information for the occupation ma-
trices.

This file is produced as part of the mechanism to restart SCC calculations, see sections 2.5 and 2.3.6.

Equivalent data can also be present in the file charges.dat, but stored as plain text. The options
WriteChargesAsText and ReadChargesAsText control which cases are generated and read respec-
tively.

Appendix J contains details of the contents of the file.

3.8 md.out

This file is only produced for VelocityVerlet{} calculations (See p. 20). It contains a log of infor-
mation generated during MD calculations, and appended every MDRestartFrequency steps. In the
case of small numbers of atoms and long MD simulations it may be useful to set WriteDetailedOut
to No and examine the information stored in this file instead.

3.9 Electrostatic potential data

The output from evaluating the electrostatic potential. The first line consists of a comment mark
followed by a logical variable as to whether there is an external electric field (or not), followed by 3
values for any regular grid pattern present in the system and the total number of points. If the data
is gridded, the next four lines contain the origin and grid separation vectors in Angstroms.

The next line is a comment, then the locations and the potential experience for a positive charge due
to the internal field plus optionally the external field (from point charges or homogeneous electric
fields). Values are given in Volts. In the case of gridded data, the location field is omitted.

For an example with a regular grid

#T 1 1 11

0.000000000000E+00 -0.200000000000E+01 -0.200000000000E+01
0.200000000000E+4-01 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 0.200000000000E+01 0.000000000000E+00
0.000000000000E+4-00 0.000000000000E+00 0.200000000000E+01
Internal (V) External (V)

0.173386318927E-10 0.314737193575E4-00

In the case where there is no regular grid:

#T 0 0 01
Location (AA) Internal (V) External (V)
0.0000E4-00 -0.2000E+4-01 -0.2000E+01 0.173386318927E-10 0.314737193575E4-00

In the case where data is generated for multiple geometry steps, this is also shown in the label:
F 1 5 525

0.000000000000E+-00 -0.200000000000E+01 -0.200000000000E+-01
0.100000000000E+01 0.000000000000E+00 0.000000000000E+-00

86 CHAPTER 3. OUTPUT OF DFTB*XT

0.000000000000E+00 0.100000000000E+01 0.000000000000E+00
0.000000000000E+00 0.000000000000E+00 0.100000000000E+-01
Internal (V) Geo 0
0.215249473376E-01

Internal (V) Geo 10
0.215815549672E-01

3.10 Excited state results files

Several files are produced during excited state calculations depending on the particular settings from
section 2.7.

Note: in the case of degeneracies, the oscillator strengths depend on arbitrary phase choices made
by the ground state eigensolver. Only the sum over the degenerate contributions is well defined
for most single particle transition properties, and label ordering of states may change if changing
eigensolver or platform. For the excited state, properties like the intensities for individual excita-
tions in degenerate manifolds again depend on phase choices made by both the ground and excited
eigensolvers.

3.10.1 ARPACK.DAT

Internal details of the ARPACK solution vectors, see the ARPACK documentation [52] for details.

3.10.2 COEEDAT

Data on the projection of this specific excited state onto the ground state orbitals. For the specific
exited state, the (complex) decomposition of its single particle states onto the ground state single
particle levels, together with its fractional contribution to the full excited state are given.

General format:

3.10. EXCITED STATE RESULTS FILES 87

TF Legacy flags

1 1.9999926523 2.0000000000 level 1, fraction of total WF, 2.0

-0.1944475716 0.0000000000 -0.1196876988 0.0000000000 | real then imaginary projection of
level 1

onto ground state 1, then ground
state 2, etc.
-0.1196876988 0.0000000000 -0.1944475703 0.0000000000

2 1.9999866161 2.0000000000 level 2

-0.2400145188 0.0000000000 -0.1767827333 0.0000000000 | real then imaginary projection of
state 2

3.10.3 EXC.DAT

Excitations data including the energies, oscillator strength, dominant Kohn-Sham transitions and
the symmetry.

Example first few transitions for C4Hy:

w [eV] Osc.Str. Transition Weight KS [eV] Sym.

5.551 0.5143882 11 -> 12 1.000 4.207 S
5.592 0.0000000 10 > 12 1.000 5.592 S

Two examples of singlet transitions with energies of 5.551 and 5.592 eV. The first is dipole allowed,
the second not. In both cases they are transitions primarily (weight of 1.000) to single particle state
12, and are of singlet character (“S”).

In the case of spin-polarised calculations, an additional column of values are given instead of the
symmetry, showing the level of spin contamination in the state (labelled as D<S*S>), with typically
states where a magnitude of less than 0.5 is usually considered reliable [48].

3.10.4 SPX.DAT

Single particle excitations (SPX) for transitions between filled and empty single particle states of the
ground state. These are given in increasing single particle energy and show the oscillator strength
and index of the Kohn-Sham-like states that are involved.

88 CHAPTER 3. OUTPUT OF DFTB*XT

5.403 0.2337689 15 -> 16
5.403 0.2337689 14 -> 16
5.403 0.2337689 15 > 17
5.403 0.2337689 14 > 17
6.531 0.0000000 13 > 16
6.531 0.0000000 12 -> 16

SOl hWwW N

3.10.5 TDP.DAT

Detail of the magnitude and direction of the transition dipole from the ground to excited states.

3.10.6 TRA.DAT

Decomposition of the transition from the ground state to the excited states. The energy and spin
symmetry are given together with the contributions from each of the single particle transitions.

3.10.7 TEST_ARPACK.DAT

Tests on the quality of the eigenvalues and vectors returned by ARPACK. For the i eigen-pair, the
eigenvalue deviation corresponds to the deviation from ((x;|H|x;) — €&;), The eigen-vector deviation
is a measure of rotation of the vector under the action of the matrix: |(H|x;) — &x;))|,, the nor-
malisation deviation is (x;|x;) — 1 and finally largest failure in orthogonality to other eigenvectors is
given.

Example:
State Ei deviation Evec deviation Norm deviation =~ Max non-orthog
1 -0.19428903E-15 0.80601119E-15 0.19984014E-14 0.95562226E-15
2 0.27755576E-16 0.85748374E-15 0.48849813E-14 0.36924443E-15
3 -0.12490009E-15 0.88607302E-15 0.88817842E-15 0.60384195E-15

3.10.8 XCH.DAT

Charges on atoms in the specified excited state. The top line contains the symmetry (Singlet or
Triplet) and the number of the excited state. The next line is the number of atoms in the structure
followed by some header text. Then on subsequent lines the number of each atom in the structure
and its charge are printed.

3.10.9 XplusY.DAT

Expert file with the RPA (X +Y)* data for all the calculated excited states.

Line 1: number of single particle excitations and the number of calculated excited states
Line 2: Level number 1, nature of the state (S, T, U or D) then excitation energy (in Hartree)
Line 3: expansion in the KS single particle transitions

3.11. PPRPA_ENER.DAT 89

Line 2: Level number 2, nature of the state (S, T, U or D) then excitation energy (in Hartree)

3.10.10 XREST.DAT

Dipole moment of the specified excited state in units of Debye.

3.11 ppRPA_ener.DAT

Excitation energies obtained within the pp-RPA formalism (see section 2.7.2). This output file also
includes the most dominant Kohn-Sham transition, its weight and energy difference as well as the
spin multiplicity of the excited state.

Here are, for instance, the first three singlet-singlet transitions for furan:

w [eV] Transitions Weight KS [eV] Symm.
6.411 HOMO -> LUMO + 0 0.998 5.162 S
6.904 HOMO -> LUMO +1 0.973 6.755 S
11.339 HOMO -> LUMO + 0, 0 0.959 5.162, 5.162 S

The first two excitations are single, whereas the third one is a double transition with predominant
HOMO-to-LUMO character.

3.12 REKS results files

Several files are produced during REKS calculations depending on the particular settings from
section 2.8.

3.12.1 tdp.dat

Detail of the magnitude and direction of the transition dipole between all electronic states.

3.12.2 relaxed_charge.dat

Charges on atoms in the specified state. The top line contains the total charge of the system.

90

CHAPTER 3. OUTPUT OF DFTB*XT

Chapter 4

Transport calculations

Within DFTB™ it is possible to treat quantum mechanical systems with open boundary conditions,
i.e. systems connected to external reservoirs and therefore quantum transport. A new Transport{}
block has been added to specify the geometry of such transport problems. Additional solvers have
been added to the Solver section to either fully solve the open boundary problem (using the keyword
GreensFunction{}) or the transmission through the system (TransportOnly). Finally a real-space
Poisson solver is available for self consistent charge calculations and electrostatic gates (within a
new section, Electrostatics, using the keyword Poisson{}).

4.1 Definition of the geometry

The input geometry for transport calculations can be a little tricky. In comparison to cluster or su-
percell boundary conditions, the geometry for transport calculation must also contain information
about the contacts (external reservoirs). The contacting leads (or surfaces) are actually semi-infinite
structures, supporting travelling waves. Unlike finite structures, where no stationary current is pos-
sible, travelling waves can only exist in such open systems. The simulation is therefore partitioned
into a device region and one or more contact regions.

Note:

A single contact can be used to model semi-infinite surfaces or the ends of nanowires/tubes. A
minimum of two contacts is required to simulate devices and to evaluate properties such as current
flow. For SCC calculations, the potential shifts within contacts are stored in files. See appendix J.0.2
for the internal format of these files.

4.1.1 Rules to build a valid input geometry

1. All device atoms must come first in the structure.

2. Each contact must comprise of two subsequent unit cells, called principal layers (PLs). The
two PLs together give all information about the contact structure and in the following are
referred generally as a “contact”.

3. A PL is a unit cell of the contacting lead that has interactions only with its nearest neighbour
PLs in tight-binding terms (i.e. the Slater-Koster interactions only extend into immediately
neighbouring PLs).

91

92

10.

CHAPTER 4. TRANSPORT CALCULATIONS

. The ordering of the atoms within the two PLs of a contact must be consistent, in the sense

that the two PLs must be exact periodic replicas of each other: If each PL comprise N atoms,
the i™ atom in the first PL must have a corresponding identical atom, i + N, in the second PL
which is related by translation to the position of atom i.

. The first PL in a contact should be always the one which is closer to the device region.

. All blocks should be contiguous in the structure and each atom must belong to one and only

one region.

. The geometry can be defined as a cluster or a supercell. In the first case is it understood that

the contacts are one-dimensional wire leads.

. If a structure is defined as being a supercell, only the lattice vectors that are transverse to the

transport direction are meaningful. The periodicity specified along the transport direction is
treated as a dummy vector (but must be present).

. For each contact the periodicity along the transport direction is actually deduced from the

separation between the two PLs (using the coordinate difference r(i + N) —r(i)). We refer to
this vector as aligned along the contact direction.

All lattice vectors (including the contact direction vector) must be aligned parallel to one
of the Cartesian axes x, y or z. In practice only rectangular cells are allowed in transport
calculations at present.

An example of a non-periodic device with contacts attached is shown in Figure 4.1.

Note:

Contact
2nd pL
\(/:eocnttaarc\t/ Contact
15t PL
Contact Contact Contact

1 PL 1stPL 2 pL

o

— On®;
Contact evice Device Device Contact
2nd pL 15t PL 2nd pL 3 pL vector v

Figure 4.1: Example of a valid 3 contact device with principal layers marked.

The code does not currently check: if the device regions are consistently defined (rules 1 and 6); if
the PL defined are really PLs (rule 3); or if the first PL defined is really the one closest to the device
(rule 5).

The code does check rules 4, 8, 9 and 10. The check for rules 4 and 9 is performed on the atomic
coordinates, such that

RALy=R/+v ViePL 4.1

4.2. TRANSPORT{} 93

where Rl-2 are atomic coordinates of atoms in the second PL of the contact, R} are atomic coordinates
of atoms in the first PL and v is the contact lattice vector. The equality is verified within an accuracy
that can be set by the user (see below for PLShift Tolerance).

Please take care when building structures and to cross-check them. Also consider looking at the
examples distributed with the code. The input structure is often the first suspect when there are
problems in transport calculations.

4.2 Transport{}

The Transport section collects together the information needed whenever open boundary conditions
are used. It contains the description of the partitioning of the system into a device and the contact
regions and additional information needed to calculate the required self-energies associated with
the contacts. The transport block contains the following properties:

Device p - 93
Contact p - 94
Task m UploadContacts 95

An example transport geometry specification looks like:

Transport {
Device {
AtomRange =1 8
}
Contact {
Id = "source"
AtomRange = 9 24
}
Contact {
Id = "drain"
AtomRange = 25 40

}
}

Where the associated atomic geometries follow the rules of Section 4.1. In this specific example,
there is only one principal layer in the device, but each contact contains two principle layers (atoms
9-16 and 17-24 in the “source” contact, atoms 25-32 and 33-40 in the “drain” contact).

4.2.1 Device{}

The Device blocks contains the following properties:

Name Type Condition Default Page
AtomRange 2i - 93
FirstLayerAtoms i+ 1

ContactPLs i+ Geometry = NoGeometry{} 11

AtomRange defines the first and last atom of the device region.

94 CHAPTER 4. TRANSPORT CALCULATIONS

FirstLayerAtoms defines the first atom of PLs in the device region. By default there is only one
layer (the entire device region). Alternatively the user can manually reorder and group the
atoms in the structure into distinct layers for more efficient Green function calculations.

The device layers, unlike the contact PLs, do not need to represent unit cell repetitions. If the
device geometry has specified principal layers, these must be ordered in such a way that all
the atoms within each of the layer are contiguous in space and adjacent layers must be placed
next to each other in the structure. This ensures that the constructed hamiltonian and overlap
are block tri-diagonal. Refer to [3] for a description of the efficient iterative Green’s function
algorithm that can then be applied.

ContactPLs are the indices of PLs coupled to every electrode (e.g. 1 7 means the first contact is
coupled to the PL number 1, the second contact — to the PL. number 7). Every contact can be
coupled to only one of PLs. This property is required for model calculations.

4.2.2 Contact{}

The contact block contains the following properties:

Id S

AtomRange 2i

PLShiftTolerance r 1E-5
Temperature r 0.0
Fermilevel r

Potential r 0.0
WideBand 1 No
LevelSpacing r WideBand = Yes 0.735
WriteSelfEnergy 1 No
ReadSelfEnergy 1 No
ReadSurfaceGF 1 No
WriteSurfaceGF 1 No
Unformatted 1 No
WriteSeparatedSGF 1 No
ReadSeparatedSGF 1 No

The sections Device and Contact are used to define the atomic range of each region. The user can
also assign a label (Id) to each contact that can be used later for cross referencing. In the section
Contact the user can add a keyword that specifies the accuracy for the internal check of the PLs
(tolerance for rule 4 of structures, i.e. that accuracy to which (4.1) must be satisfied).

Id Assign a text label to the contact (must be 50 or fewer characters).

AtomRange Defines the first and last atom of the device region. Note the contacts should be
defined such that the atoms included in the range are in continuous increasing order in the
structure.

PLShiftTolerance [length] Used to set the absolute accuracy used to check principal layer (PL)
consistency (see above). The default is 10~ atomic units. Please be aware that using a large
values may hide errors due to an inconsistent definition of the contacts, therefore it should
not be modified.

Temperature [energy| Specifies the electronic temperature of the contact (see a more detailed
discussion after the section Analysis).

4.2. TRANSPORT{} 95

FermiLevel [energy] Optional overriding of the Fermi energy that is specified in the appropriate
contact shift file.

Potential [energy| Specifies any additional electrostatic potential applied to the contact. The nat-
ural units of this quantity are a (potential) energy.

WideBand Use the wide band approximation for the contact. If set to Yes, the surface Green’s
function of the contact is not explicitly calculated but is instead assumed to be local and
constant according to a specified density of states.

LevelSpacing [energy] Specifies the inverse of the density of states (DOS) per atom to be used
for the Wide Band approximation. As an example, the DOS of gold at the Fermi level is
0.05 eV~ 'atom™!, which corresponds to an energy spacing of 20 eV ~0.735 Hartree (the
default value).

WriteSelfEnergy Write the contact self energy to a single formatted text file matching its contac-
tld and called contactld-SelfEnergy.mgf.

ReadSelfEnergy Read the contact self energy from a single formatted text file matching its con-
tactld and called contactld-SelfEnergy.mgf.

ReadSurfaceGF Read the contact retarded Green function from a single formatted text file match-
ing its contactld and called contactld-SurfaceGF.mgf.

WriteSurfaceGF Write the contact retarded Green function to a single formatted text file matching
its contactld and called contactld-SurfaceGF.mgf.

Unformatted If set to Yes, the above mentioned files are written in binary instead of text format.

WriteSeparatedSGF Write the contact retarded Green functions for every energy separately to
binary files in the GS directory.

ReadSeparatedSGF Read the contact retarded Green functions for every energy separately from
binary files in the GS directory. If there are no required files, the SGFs are calculated and
saved.

4.2.3 Task = ContactHamiltonian{}

The Task option is used to define which type of calculation should be performed. Before performing
a transport calculation it is necessary to compute some equilibrium properties of the contacts by
running a periodic boundary condition DFTB calculation. This necessary step must be carried out
separately for each contact and can be done by specifying a Task=ContactHamiltonian block, as in
the following example to calculate the source case.

Task = ContactHamiltonian {
Contactld = source
ContactSeparation [Angstrom] = 50.0
WriteBinaryContact = Yes

}

When Task=ContactHamiltonian the following options can be defined

96 CHAPTER 4. TRANSPORT CALCULATIONS

Contactld S
ContactSeparation r le3
WriteBinaryContact 1 No

Contactld Id label of the contact to be calculated.

ContactSeparation [length] Dummy separation in transverse direction (see the following expla-
nation).

WriteBinaryContact Controls whether the contact shift file is written as a text file (file extension
.dat) or a binary file (.bin).

The contact calculation computes the bulk Hamiltonian, self-consistent charges (if SCC) and Fermi
level for each contact. This is a usual DFTB™calculation for which appropriate parameters must
be included in the input file. For supercell structures the calculation of the contact is performed
using corresponding supercells in which the transverse lattice vectors are those specified in the Ge-
ometry tag and the lattice vector along the contact direction is deduced from the PL separations
(rule 9). If the structure is defined as a cluster, the contact calculation is performed for a supercell
in which the contact is treated as one-dimensional periodic wire with a surrounding vacuum region.
However, since DFTB*does not support pure one- and two-dimensional calculations, dummy lat-
tice vectors are defined for the two remaining directions. The default value for these lattice vectors
is 1000 a.u. (527 A), which should guarantee sufficient wire to wire distances to avoid Coulomb
interactions. The user can specify an alternative contact separation using the keyword ContactSep-
aration placed in the ContactHamiltonian block. Each contact computation produces one output
file called shiftcont Contactld.dat which storing energy shifts and Mulliken charges that must be
present in the working folder in all subsequent transport calculations.

Note that during the contact calculation you will need to perform a k-point integration in the contact
direction (as the contacts are semi-infinite). Whenever the system is defined as a cluster, DFTB*
will automatically extract the periodicity vectors from the geometry such that the first reciprocal
vector will correspond to the transport direction. Therefore you must specify a k-point sampling for
the periodic calculation by sampling along the first reciprocal lattice vector. As an example, if the
structure is defined as a cluster (i.e., 1-dimensional wire leads), the source contact calculation will
have an input file similar to:

Task = ContactHamiltonian {
Contactld = source

}

Hamiltonian = DFTB {

KpointsAndWeights = SupercellFolding {
8 0 0 # sampling points here regardless of the transport direction
010
001
0.50.00.0

}
}

4.2. TRANSPORT{} 97

On the other hand, if your structure is defined as a supercell (as an example, a molecule with bulk
contacts) and the transport direction is along the y direction, your the source contact calculation will
have an input file similar to:

Task = ContactHamiltonian {
Contactld = source

}

Hamiltonian = DFTB {

KpointsAndWeights = SupercellFolding {
4 0 0 + points in periodic direction
0 8 0 # points in transport direction
0 0 4 +# points in periodic direction
050505

}
}

This could seem confusing, but the underlining reasons is that in the cluster calculation the recip-
rocal lattice is set up by the code itself, while in the periodic calculation is set up by the user, who
can chose any arbitrary direction. Refer to the transport cookbook and to the distributed examples
for further clarification.

4.2.4 Task = UploadContacts{}

After the contact calculations, it is possible to perform actual transport calculations. This is speci-
fying Task = UploadContacts, with possible additional option

] ReadBinaryContact 1 No ‘

ReadBinaryContact Controls whether the contact shift file should be read as a text file (file ex-
tension .dat) or a binary file (.bin).

Note: if no task is specified, DFTB* assumes UploadContacts is the required task in the transport
block and the shiftcont Contactld.dat text files are used.

In order to set up a proper transport calculation the user can also define the contacts’ Fermi levels
(as printed in the files previously produced by using ContactHamiltonian tasks) and any required
potential shift for each contact.

Transport {

Device {
AtomRange =18

}

Contact {
Id = "source"
AtomRange = 9 24
Fermi level is specified in the contact shift file
Potential = 0.0 is assumed

98 CHAPTER 4. TRANSPORT CALCULATIONS

}

Contact {
Id = "drain"
AtomRange = 25 40
FermilLevel [eV] = -8.4123
Potential = 1.0

}

Task = UploadContacts {
ReadBinaryContact = Yes

}

Note: During the transport calculation you will not need to set up the k-point integration when the
structure is defined as a cluster, just as in a regular DFTB™ calculation. For supercell calculations,
integration perpendicular to the transport direction will need to be accurate, but the sampling grid
can in the transport direction itself can have only a single value. In the special case where your
device is a supercell but also wire-like, with a vacuum region lateral to its transport direction, the
Gamma-point can be chosen:

KPointsAndWeights = {
000 1.0

}

4.3 GreensFunction

For calculations in open systems, instead of calculating the eigenstates of the system, a Green
function method is used to obtain the density matrix of the system. The Green function (GF) solver
can also be used for conventional supercell/cluster boundary conditions if required.

In order to activate Green function calculations the user must define the keyword Solver = Greens-
Function in the Hamiltonian section. The GF solver, either under equilibrium (no bias applied) or
under non-equilibrium conditions, builds the density-matrix of the device region such that it is con-
sistent with any contacts that are present. Strictly speaking the GF does not solve for the eigenstates
of the system, however it logically substitutes the traditional construction of the density matrix from
the eigenstates of the system, as would be obtained after the diagonalisation step. The usual DFTB™
self-consistent calculations can be driven using the GF solver.

The following table gives the important parameters of the solver:

4.3. GREENSFUNCTION 99
Name Type Condition Default Page
Verbosity i Options%Verbosity
Delta r 1E-5
ContourPoints 2i 20 20
LowestEnergy r -2.0
FermiCutoff i 10
EnclosedPoles i 3
Real AxisStep r Real AxisPoints=undefined 6.65E-4
Real AxisPoints r Real AxisStep=undefined
SaveSurfaceGFs 1 Yes
ReadSurfaceGFs 1 No
FirstLayerAtoms i+ Transport = undefined 1
Fermilevel r Transport = undefined
LocalCurrents 1 No

Note: For efficient GF calculation the device region must be partitioned into layers whose funda-
mental property is to interact with nearest-neighbour layers only (see section 4.1).

Verbosity This parameter controls the level and amount of output messages and takes values rang-
ing from 1 to 100. The default value is equal to the Verbosity parameter of Options block.

Delta [energy] A small positive imaginary delta used in the GF definition and required for the x
contour integration.

ContourPoints The number of points along the complex contour integration of the GF along the
segments ¢ and . (see contour integration in section 4.5).

LowestEnergy [energy] The initial energy from which the integration starts. It should be low
enough to ensure that all the electronic states are correctly included in the integration. The
default is -2.0 Hartree (see contour integration).

FermiCutoff Integer number setting the Fermi distribution cutoff in units of k7. It is read only if
the Fermi distribution temperature is greater than O (see contour integration).

EnclosedPoles The number of Poles enclosed in the contour. It is meaningful only in finite tem-
perature calculations (see contour integration).

Real AxisStep [energy] The energy step along the real axis integration for non-equilibrium calcu-
lations. Note: Real AxisStep and Real AxisPoints cannot both be defined at the same time.

RealAxisPoints The number of points along the real axis integration needed in non-equilibrium
calculations. The default depends on the electronic temperature and bias. Note: Real AxisStep
and RealAxisPoints cannot both be defined at the same time.

SaveSurfaceGFs As the SCC cycle usually needs to repeat the calculation of the Green’s function
at given energy points and as the surface Green functions do not change during the SCC cycle,
this flag allows for saving the surface Green functions to disk and so save computational time
on every SCC cycle after the first.

ReadSurfaceGFs Loads the surface Green’s function from a file at the the first SCC cycle. Note
that this operation only makes sense if the energy integration points are identical to the calcu-
lation used to generate the surface Green’s function files. The code does not verify whether
this condition is fulfilled. In general there is no need to modify the defaults for ReadSur-
faceGFs and SaveSurfaceGFs.

100 CHAPTER 4. TRANSPORT CALCULATIONS

FirstLayerAtoms As described in Device block. Can be specified only if no Transport block
exists. Note: the Green solver can be used also to calculate the density matrix when there are
no open boundary conditions, for example to take advantage of the iterative scheme in quasi-
1d systems. In this case, a Transport block is not defined and therefore FirstlayerAtoms{}
should be given in the GreensFunction block. Also, the Fermi level of the system must be
known and provided to fill up the electronic states.

FermilLevel [energy] Required to set the Fermi level used by the Green solver to fill up the elec-
tronic states, unless already specified by contacts being already present.

LocalCurrents If set to Yes, local bond-currents are computed using the non-equilibrium density
matrix. This task is currently limited to non-periodic systems. The output is placed in a file
Icurrent _u.dat (or lcurrent d.dat depending on spin). The files are arranged in a table in
order of increasing neighbour distance,

i T [2[Lp B3] Lz | |
This file can be processed using the small code flux provided in tools/transport that helps in
building plots for jmol.

] Atom(i) \ X \ y \ zZ \ nNeighbours

GreensFunction section example:

Solver = GreensFunction {
FirstLayerAtoms = 1 61 92 145
Delta [eV] = 1E-4
ContourPoints = 20 20
Real AxisPoints = 55
LowestEnergy [eV] = -60.0
FermiCutoff = 10
EnclosedPoles = 3

4.4 Solver = TransportOnly

The GreensFunction block is used to solve the full self-consistent NEGF transport problem. How-
ever, the block TransmissionAndDos{} within the Analysis block (see below), can be used to cal-
culate the transmission function according to the Landauer formula, without solving for the full
density matrix. This can be applied even for calculations where the density matrix and charge den-
sities are not computed. Similarly, in these cases the electrostatics block should be omitted (i.e.
the Electrostatics = Poisson). The keyword Solver = TransportOnly is used to jump straight to
the post-SCC analysis. Note: This option cannot be used together with calculations which require
forces, including geometry relaxations or md calculations.

4.5 Contour integration

Much of the computational work for transport is in the integration of the energy resolved den-
sity matrix, as represented via the NEGF matrix. The integration is efficiently performed with a
complex contour integration and a real axis integration, as shown in Figure 4.2 and discussed in
references [59, 60, 3]. All integrations are performed with Gaussian quadratures and the number

4.6. SPIN-POLARISED TRANSPORT 101

¥

Figure 4.2: Contour integration in the complex plane for the Green’s functions. The crosses
represent poles of either G" or the Fermi function.

of points must be specified manually. The complex contour integration is subdivided into two sec-
tions: the first section is the arc of a circle, %, that can be computed with a few integration points
(default 20); the second section is a line that intersects the contour and runs parallel to the real axis
at a distance that depends on the number of poles of the Fermi function that are enclosed within the
contour. Usually a good choice for the number of poles is between 3 and 5 (the default is 3). The
poles are placed at the complex points z,, = Er + i(2m+ 1)mkgT and therefore are separated from
each other by 27wk T, where kp is Boltzmann’s constant. At 7 = 300 K this corresponds to a separa-
tion of 156 meV. It should be noted that, as the temperature decreases, the separation between poles
reduces. This makes the contour integration harder as it needs to walk across two singularities. At
very low temperatures, 7 = 10 K, the separation is 5.2 meV. Below this temperature, the contour
integration is treated as 7 = 0 in order to avoid numerical inaccuracies. The integration along the
segment . extends up to Re [z] = Ep +nkgT, where n is an integer number specified by the keyword
FermiCutoff and has a default value of 10. In the limit 7 = 0 K the poles collapse into a non-analytic
branch cut and the contour needs to be changed such that the second section of the complex contour
becomes the arc of circle closing on the real axis. Finally, the real axis integration extends between
the lowest and highest chemical potentials. The number of quadrature points should depend on the
bias itself and can be set using Real AxisPoints or Real AxisStep. The default value is 1 pt/0.018 eV
(actually 1500 pt/1 Hartree). In finite temperature calculations the segment is extended to include
the Fermi cutoff by nkgT on both sides (u; — nkgT, Uy + nkgT). In this case the number of quadra-
ture points are increased by assuming the same point density defined in the range (u;, 4p). Example:
for a bias of 0.2 V, the default number of points is 0.2-1500/27.21139 = 11. At T = 300 K the
interval is increased by 0.26 eV on both sides, therefore 0.26 - 1500/27.21139 = 14.33 which is
truncated to 14 points, leading to a total of 38 points along the real axis. The use of the keyword
Real AxisStep is usually more convenient because it ensures a consistent real axis integrations dur-
ing, for example, a bias sweep.

Note: The GF solver can be used also for calculations other than the transport context. In cases
where the position of the Fermi Energy is known with good accuracy, the density matrix solver
based on the GF can be used to compute the electronic properties of clusters and supercells. The
recursive algorithm may be an efficient solution to large problems having an elongated one dimen-
sional shape.

4.6 Spin-polarised transport

Spin-polarised transport is not available yet. Collinear spin transport will be available soon, as all
the needed machinery has been implemented and is undergoing debugging and testing.

102 CHAPTER 4. TRANSPORT CALCULATIONS
4.7 Poisson solver

The Poisson solver is a fundamental part of charge self-consistent non-equilibrium transport calcu-
lations and must be declared whenever an SCC NEGF calculation is performed using Electrostatics
= Poisson. Under non-equilibrium conditions the self-consistent potential of the KS equations
cannot be solved using the efficient y-functional, but instead requires the definition of appropriate
boundary conditions for the potentials imposed by the contacts. However, since the y-functional is
functionally related to a pure Hartree potential, it can be obtained in real space by solving a Poisson
solver. The Poisson equation is solved in a box with hexahedral prism shape. This restriction is
imposed by the Poisson solver being employed. This restricts calculations of supercell structures to
orthorhombic super-lattices. An additional restriction is that the box sides must be aligned with the
Cartesian axes, X, y, Z.

Name Type Condition Default Page
Verbosity i Options%Verbosity

PoissonBox 3r

BoxExtension r 0.0

MinimalGrid 3r 0.30.30.3

PoissonAccuracy r 1E-7

AtomDensityTolerance r 1E-6

AtomDensityCutoff r 14.0

CutoffCheck 1 Yes

NumericalNorm 1 No

SavePotential 1 No

PoissonAccuracy r 1E-6

MaxPoissonlterations i 60

BuildBulkPotential 1 Yes 104
ReadOldBulkPotential 1 Yes 104
OverrideDefaultBC m none{} 104
OverrideBulkBC m none{} 104
BoundaryRegion m global{} 104
Gate m none{} 106
MaxParallelNodes m none{} 110
RecomputeAfterDensity 1 No

PoissonThickness r contacts = 1

Verbosity This parameter controls the level and amount of output messages and takes values rang-
ing from 1 to 100. The default value is equal to the Verbosity parameter of Options block.

PoissonBox [length] Dimension of the Poisson box along the directions x, y and z.

BoxExtension [lengrh] With this value it is possible to tune the position of the box interface be-
tween the device and contacts. By default (BoxExtension=0.0) the boundary is placed at the
midpoint between the last device atom and the first contact atom.

MinimalGrid [length] The minimal requested grid spacing along x, y and z. The actual grid spacing
chosen by the multigrid solver will be lower than this.

AtomDensityTolerance In order to calculate the potential, the Mulliken charges are projected on
the real space grid. This parameter defines the cutoff after which the charge is considered
to vanish (i.e., the spatial extension of the projected charge). The default is 1E-6 e. Note

4.7. POISSON SOLVER 103

that the contacts must be at least twice the length over which a projected Mulliken charge
extends. If this conditions is not fulfilled and CutoffCheck is set to Yes, the code will exit
with an error message. Setting this parameter to a lower value could allow shorter contacts
to be defined in some cases. However this could lead to error in the potential and hence to
spurious reflections, therefore it should be left at its default value (or changed very carefully).

AtomDensityCutoff [lengrh] Defines the atomic radius cutoff. This is an alternative to AtomDen-
sity Tolerance and directly specifies the distance over which charge density associated with an
atom is considered to vanish.

CutoffCheck If set to No, consistency between contact length and charge extension is not veri-
fied (see AtomDensityTolerance and/or AtomDensityCutoff). The default is Yes. As with
AtomDensity Tolerance, this parameter should not be changed unless you know exactly what
you’re doing.

SavePotential Save the electrostatic potential to the file potential.dat and the charge density to
charge density.dat. Additional files Xvector.dat, Yvector.dat, Zvector.dat and box.dat are
also created. These files can be converted to a cube file that can be visualised in jmol. See
section 4.16 about transport tools.

PoissonAccuracy Defines the accuracy for the approximate solution of the Poisson equation (de-
fault value 1079).

MaxPoissonlterations Defines the maximum number of iterations allowed for the solver.

RecomputeAfterDensity When set to Yes, Poisson’s equation is solved again after the density
matrix is created in order to make the electrostatic energy consistent with the newly updated
charges. In transport calculations it is set to No by default in order to avoid the extra time
spent on the Poisson step. This does not affect the SCC loop or other calculations apart from
the electronic energy and forces.

PoissonThickness In the special case of a single contact (cases like the end of semi-infinite wires
or surfaces of crystals), the thickness of the Poisson box normal to the surface of the contact
can be set with this command.

Note: The Poisson box can be specified using the keyword PoissonBox. In calculations where two
contacts face each other along the same axis, setting the box-size along this axis will has no effect
(the code adjusts to the correct size internally). The PoissonBox keyword is redundant (and should
not be specified) when the system is periodic, since in this case the box geometry is taken from the
supercell lattice vectors.

Numerical error in the potential will results in spurious discontinuities at the contact-device inter-
faces. The default tolerances should be sufficient to avoid this in most cases.

Below is a a typical example of the whole Poisson block specification. Some of the keywords are
described in the next subsections.

Electrostatics = Poisson {

PoissonBox [Angstrom] = 20.0 20.0 20.0
MinimalGrid [Angstrom] = 0.3 0.3 0.3
SavePotential = No

BuildBulkPotential = Yes
ReadOldBulkPotential = No

104 CHAPTER 4. TRANSPORT CALCULATIONS

BoundaryRegion = Global {}

PoissonAccuracy = 1E-7

Gate = Planar{
GatelLength | [Angstrom] = 10.0
GatelLength t [Angstrom] = 20.0
GateDistance [Angstrom] = 7.0
GatePotential [eV] = 1.0

}
}

4.7.1 Boundary Conditions

The Poisson equation is solved imposing boundary conditions (BC) on the potential at the six faces
of the Poisson Box. In transport calculations for non-supercell geometries comprising two contacts
placed along the same axis, the BCs are chosen as follows:

Dirichlet fixed potentials on the two contact faces with values defined by the applied potentials (see
UploadContacts).

Neumann zero normal field on the remaining 4 lateral box faces

In periodic supercells the BCs are: Dirichlet (fixed potentials) on the two contact faces with values
defined by the applied potentials (see UploadContacts) and Periodic on the remaining 4 lateral box
faces.

In some specific cases Neumann BCs can be set on one contact. In order to do so it is necessary to
use OverrideDefaultBC (see below).

The device and contact potentials should smoothly join at the interface. In order to achieve this
the code computes the bulk potential of each contact and uses the result as a BC on the contact
face of the Poisson box. This is useful when the contact potential is not uniform due to charge
rearrangements. Any externally applied contact potential (Potential) is added to the bulk potential.
The user can deactivate this calculation by setting the keyword BuildBulkPotential to No.

Note: The bulk potential is computed on a special box that has “lateral” sizes copied from the device
box, and has the size of one PL along the contact direction. The BCs are—so to speak—inherited
from the device region. In particular:

1. Along the contact direction periodic BCs are imposed on both faces.
2. On the other four faces the BCs are copied from the device region (supercell or cluster).
3. The user can override this setting using OverrideBulkBC (see below).

4. When all four faces inherit Neumann BC (default for the device region), these are ALL inter-
nally changed to Dirichlet, because the solver cannot handle this situation as it gives rise to a
singular matrix.

BuildBulkPotential (default: Yes) is used to calculate the electrostatic potential of the contacts
and the result is used as a Dirichlet boundary condition on the contact face (superimposed to
the contact potential).

ReadOldBulkPotential Read a previously computed bulk potential from hard-disk.

4.7. POISSON SOLVER 105

BoundaryRegion Specifies how the Dirichlet boundary conditions are treated on each contact
face of the Poisson box. It can be Global, Square or Circle. Global means that the BC is
applied to the entire face of the box, whereas the other keywords imply that the Dirichlet BC
are applied on a cross-section projected on the contact face. This is useful for instance when
handling nanowire contacts, for which it is not really correct to impose a constant potential
on the whole face of the Poisson box.

BufferLength [length]| can be used to set the size of the boundary region beyond the atomistic
size which is determined as the minimal circle or square containing all atoms of the contact
cross-section.

Name Type Condition Default Page
BufferLength r 9.0
Example:

BoundaryRegion = Circle {
BufferLength [Angstrom] = 3.0
}

In some special cases it might be necessary to override the default BCs applied by the code to
the Poisson equation. Currently this can be done using the keywords: OverrideDefaultBC and
OverrideBulkBC.

In the special case of a single contact, the boundary condition on the other side of the box to that
contact is automatically over-ridden to be of Neumann type (but can still then be over-ridden with
OverrideDefaultBC).

OverrideDefaultBC block is used to override the BCs described above. It can be used to force
Dirichlet or Neumann BCs along some specified directions or on one of the four lateral faces
of the Poisson box.

Boundaries is used to specify on which face different BCs must be imposed. Assuming contacts
are aligned along z, the keyword can be set to be any of xmin, xmax, X, ymin, ymax or y.

OverrideDefaultBC = Dirichlet {
Boundaries = xmin
}

For instance, setting a Dirichlet BC on Boundaries = xmin imposes ¢ (x,y,z) = 0 on the face placed
at X = Xpyin, While boundaries = xmax would impose ¢(x,y,z) = 0 on the face placed at x = xpax.
When Dirichlet needs to be forced on both faces it is possible to use either boundaries = xmin,xmax
or simply boundaries = x. The same syntax can be used to impose conditions on more faces, using
boundaries = x,y or boundaries = x,ymin.

A similar strategy can be used to impose different boundary conditions on the contacts. For instance,
a Neumann BC can be set on one contact face by using

OverrideDefaultBC = Neumann {
Boundaries = zmin
}

106 CHAPTER 4. TRANSPORT CALCULATIONS

Note that the user should know which face of the Poisson Box corresponds to the desired contact.
Furthermore, if the user sets Neumann at all contacts the Poisson solver will not converge (singular
matrix) unless the Dirichlet condition is imposed somewhere else (e.g., a gate potential is present).

It is also possible to override the default BCs when computing the bulk potential.

OverrideBulkBC block is used to override bulk BC usually copied from the device region.

Boundaries has the same meaning and syntax as in OverrideDefaultBC.

For example by choosing

OverrideBulkBC = Neumann {
Boundaries = x, y
}

4.7.2 Electrostatic Gates

The option Gate can be used to specify an electrostatic gate. Currently the available gate types
are Planar and Cylindrical. There are some restrictions as the planar gate must be placed with
its face parallel to the x-z plane, i.e., the gate direction must be along y. At the same time the
transport direction should be along the z-axis (i.e. perpendicular to the gate). The latter is not
really a restriction but it gives meaning to “longitudinal” (1) and “transverse” (t) in the geometrical
definitions of the gate lengths. Example:

Gate = Planar {
GatelLength | [Angstrom] = 20.0
GatelLength t [Angstrom] = 20.0
GateDistance [Angstrom| = 7.0
GatePotential [eV] = 1.0

}

Gate = Cylindrical {
GatelLength [Angstrom] = 10.0
GateRadius [Angstrom] = 7.0
GatePotential [eV] = 1.0

}

The various options for the gates have the following meanings:

GateLength | [length] Sets the gate length along the transport direction (always assumed to be
7). The gate is centred in the middle of the device region.

GateLength t [length| Sets the gate extent transverse to the transport direction (assumed to be
x). The gate is centred in the middle of the device region.

GateDistance [length] Sets the distance of the gate from the centre axis of the device region.
GatePotential [energy] Sets the potential applied to the gate.

GateRadius [length] For a cylindrical gate, sets the distance of the gate from the centre axis or
gate radius.

4.8. MODEL HAMILTONIANS 107

Name Type Condition Default Page
GatelLenth | r 0.0
Gatelenth t r 0.0
GateDistance r 0.0
GatePotential r 0.0
GateRadius r 0.0

Note that the gate option has not be tested thoroughly and may still contain bugs. Please report any
problems you encounter to the developers.

4.8 Model Hamiltonians

To use the external Hamiltonian without geometry (if Geometry = NoGeometry{}), the type of
the Hamiltonian must be set to Model{}:

Hamiltonian = Model{}

The Model{} method must contain the NumStates parameter and optional HamiltonianMatrix{}
and OverlapMatrix{}. If HamiltonianMatrix{} is not given, default file H.mtr with the Hamiltonian
matrix should present.

All properties of the Model{} method are:

Name Type Condition Default Page
NumStates i -

HamiltonianMatrix ~ N2r <<< H.mtr

OverlapMatrix Nr Unity matrix

Dephasing p 108
SpinDegeneracy 1 No

Orthonormal 1 No

OrthonormalDevice 1 No

N=NumStates

NumStates is a full number of states in the Hamiltonian including the electrodes. Required for
model calculations without geometry.

HamiltonianMatrix [energy] is an array of real numbers.

OverlapMatrix is an array of real numbers. This property is not required, the default is unity
matrix (orthogonal basis).

Dephasing Two models of elastic dephasing ("Biittiker probe" and "vibronic dephasing") can
be used now to include the dephasing and dissipation beyond the coherent Green function
method. Thus, we made a new step towards realistic material and device modeling. See
Sec.4.9.

SpinDegeneracy When set to Yes, the same Hamiltonian is assumed for spin-up and spin-down.
Orthonormal When set to Yes, Lowdin orthogonalization is performed to full Hamiltonian.

OrthonormalDevice When set to Yes, Lowdin orthogonalization is performed only to the central
“device” part.

108 CHAPTER 4. TRANSPORT CALCULATIONS

Note: The structure of the Hamiltonian must be consistent with the definition of transport geometry
in Sec. 4.2 and follow the same rules as discussed in Sec. 4.1: first the central region, then electrodes
one by one, every from two blocks. For two electrodes it looks like

Hc Ve 0 Vg O
Vi, Hyoy Hy, 0 0

H=| 0 H, Ho 0 0 4.2)
Vie 0O 0 Hg Hg
0 0 0 Hj Hg

Example!:

Hamiltonian = Model {

NumStates = 5

HamiltonianMatrix [eV] = {
1.00 0.10 0.00 0.20 0.00
0.10 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.20 0.00 0.00 0.00 1.00
0.00 0.00 0.00 1.00 0.00

}
}

In this example a single level with the energy 1 eV is coupled to the left electrode with the coupling
Ver = 0.1 eV and to the right electrode Vg = 0.2 eV.

Instead, the name of the data file can be included in the standard way:

HamiltonianMatrix [eV] = { <<< "filename" }

Model Hamiltonians are used at the moment only for transport calculations. It is important to add
the property ContactPLs{} to the Device{} section (see Sec.4.2.1).

4.9 Quasi-elastic dephasing

To switch on the dephasing effects, the group Dephasing{} must be included into the Hamiltonian
group. The Dephasing{} group may contain the following methods/properties:

Name Type Condition Default Page
BuettikerProbes ~ m none{} 108
VibronicElastic m none{} 109

4.9.1 BuettikerProbes{}

BuettikerProbes switches on the Biittiker probe dephasing. There are two methods: ZeroPo-
tential{} and ZeroCurrent{}. The first one describes physical conducting environment with
fixed (at the moment zero) electrical potential. The second is for the Biittiker Probe Model

!'The input/output for this and other examples one can find in /external/examples/Model/.

4.9. QUASI-ELASTIC DEPHASING 109

of dephasing, when the zero-current condition is fulfilled by artificial adjustment of local
electrical potentials.

Examples?:

BuettikerProbes = ZeroPotential {
Coupling [eV] = constant { 0.01 }
}

BuettikerProbes = ZeroCurrent {
Coupling [eV] = constant { 0.01 }
}

Coupling [energy] describes coupling to the environment. The method constant{} couples all
states equivalently. The other possible methods are AtomCoupling{} — with different cou-
plings for different atoms, and AllOrbitals{} — with different couplings for all atomic orbitals.
For the model calculations these two options are equivalent.

Coupling [eV] = AtomCoupling {
AtomlList { Atoms = 1
Value = 0.1
}

AtomList { Atoms = 2 3
Value = 0.01
}

AtomList { Atoms = 4 5
Value = 0.03
}

}

Coupling [eV] = AllOrbitals { 0.1 0.1 0.1 ... }

4.9.2 VibronicElastic{}

VibronicElastic switches on the quasi-elastic vibronic dephasing method. There is only one
method local{} available at the moment. The Coupling{} method can get the same val-
ues as for Biittiker probe dephasing. There are several additional options: AtomBlock (de-
fault=.false.), which changes the way of coupling between electrons and phonons; MaxN-
umlter — the maximum number of iterations (default=100); Mixing — control of mixing in
the self-consistent cycle (default = 0.05); Tolerance — control of the convergency tolerance
(default = 0.001).

Example:

VibronicElastic = local {
AtomBlock = Yes
Coupling [eV] = Constant {0.01}
MaxNumlter = 1000
Mixing = 0.5
Tolerance = 0.001

}

2The examples of input/output one can find in /external/examples/Dephasing/.

110 CHAPTER 4. TRANSPORT CALCULATIONS
4.10 Application to STM spectroscopy

To appear in the next version.

4.11 Parallelisations

The code has been parallelised in two main parts. The Non-equilibrium Green’s functions are
computed by distributing the energy points along the contour and real axis calculations. Contour
and real axis integrations are independent and separately distributed. Load balancing has to be taken
care of by the user. For instance if ContourPoints = {20 20} (i.e. 40 in total) and Real AxisPoints =
60, by setting 10 MPI nodes, each node will handle 4 points along the contour and 6 points along
the real axis.

Mixed OpenMP/MPI calculations are possible. When compiling DFTB* the user should link
against threaded BLAS/MKL, rather than sequential. Numerical experiments show that best perfor-
mance on multicore CPUs is generally obtained by running independent MPI processes on physical
sockets and exploiting OpenMP multithreading within each socket. For instance NEGF can exploit

threaded matrix-matrix products. The user can experiment by setting the environment variable
OMP_NUM _THREADS.

The Poisson solver itself has not been parallelised yet. Currently the assembly of the charge density
on the real-space grid and the projection of the potential onto the atoms has been parallelised. Since
the gathering of the charge density on each node can easily hit communication bottlenecks, the user
can use the parameter MaxParalleINodes to control distributions of these calculations. The default
is MaxParalleINodes=1, this can be increased until speedups are observed.

MaxParalleINodes i 1

4.12 Analysis{}

The Analysis block is used to specify post-scf calculations such as transmission or projected DOS.

Analysis{

TransmissionAndDOS{
EnergyRange [eV] = {-5.0 -3.0}
EnergyStep [eV] = 0.02

}

}

4.13 TransmissionAndDos{}

This method block can be specified in Analysis{} and it is used to calculate the transmission by
means of Caroli formula, the current by means of Landauer formula and the Density of States from
the spectral function. This block can only be specified if an open boundary system has been defined
in Transport{}.

4.14. SETTING ELECTRONIC TEMPERATURE 111

Verbosity i Options%Verbosity
EnergyRange 2r

EnergyStep
TerminalCurrents
WriteTunn
WriteLDOS
Region

Yes
No
111

T - =T =

Verbosity This parameter controls the level and amount of output messages and takes values rang-
ing from 1 to 100. The default value is equal to the Verbosity parameter of Options block.

EnergyRange [energy] Contains the energy range over which the transmission function and local
density of states are computed.

EnergyStep [energy] Is the energy sampling step for evaluating properties.

TerminalCurrents{} in multi-terminal configurations is used to define the terminal across which
current must be computed. The terminal pairs are defined by using the keyword EmitterCol-
lector, for example:

TerminalCurrents{
EmitterCollector = {"source" "drain"}
EmitterCollector = {"source" "gate"}

}

The block TerminalCurrents may be omitted since the code automatically sets all possible
independent combinations for the terminal currents. For example in a 4-contact calculations
the currents are 1-2, 1-3, 1-4, 2-3, 2-4, 3-4.

WriteTunn The energy-dependent transmission coefficients are calculated and written to the file
transmission.dat.

WriteLDOS The energy-dependent local DOS is calculated and written to the file localDOS.dat.

Region{} This block defines atomic ranges or orbitals on to which the local density of states is
projected. The definition in the block follow the same syntax as a DFTB™ calculation without
transport (see section 2.6).

4.14 Setting electronic temperature

In the current state of the code the electronic temperature of the system can be set in different
places. One place is within the Hamiltonian block in the Filling section. The Temperature specified
here is effective for the whole device and applies to all contact calculations as well. Note that during
contact calculations the temperature is read from the Filling section and not from the contact section.
During contact calculations only Fermi filling can be used.

When a temperature is specified in the Contact section of the Transport block, it overrides the
system temperature specified in filling.

112 CHAPTER 4. TRANSPORT CALCULATIONS
4.15 Troubleshooting transport

The DFTB* transport machinery is designed to calculate transport in structures with a large number
of atoms. To take full advantage of the iterative algorithm, be sure that the system is correctly
partitioned into Principal Layers, as described in section 2.6. Be aware that an incorrect partitioning
will lead to wrong results. If you are not completely confident, you can run a calculation on a test
system with and without principal layer partitioning in the device region and the results should be
the same.

On some systems, a Segmentation Fault error could occur while running relatively large structures.
This can happen because the stack memory limit on your system has been exceeded (the Intel
compiler for example can show this behaviour). You can troubleshoot this by setting a higher limit
for the stack memory. In bash you can remove the stack memory limitation with the command line
ulimit -s unlimited.

4.16 Transport Tools

Some tools useful for transport calculations can be found in tools/misc/transport.
buildwire

This tool can be used to create a one-dimensional nanowire, ready for transport calculations. A
Principal Layer must be defined as a gen file, complete with supercell information. The code needs
as input the number of PLs in the device region and the direction of the device. The resulting
geometry will include 2 PLs for each contact and the specified number of PL repeats in the device
region.

flux

This can be used to visualise the local bond currents in a junctions. The code reads the output
files lcurrents.dat and writes out a script for jmol with arrows of different length/thickness for the
currents.

makecube

This program can be used to convert the real-space potential.dat or charge density.dat files com-
puted on the Poisson box to a cube file that can be plotted using jmol.

makecube potential.dat [-r refpot] [-b boxfile xfile yfile zfile]

Options:

-r refpot provides a reference potential that is subtracted from potential.dat For instance it is possible
to subtract the equilibrium potential from the bias cases.

-b The code reads by default the files box.dat, X,Y,Zvector.dat, but different filenames can be given
with this flag

Once the cube file has been created it can be read into jmol and visualised using the following script,

script colormap128.jmol
load "structure.xyz"
isosurface pl1 fullplane plane {-1.2 0.8 0 0} color range all colorscheme 'user’ 'potential.cube’

4.16. TRANSPORT TOOLS 113

Notice that a 128 palette colour map is provided in the tool folder. Also note that the structure
should be converted to xyz to be read into jmol.

114 CHAPTER 4. TRANSPORT CALCULATIONS

Chapter 5

MODES

The MODES program calculates vibrational modes using data created by DFTB™.

5.1 Input for MODES

The input file for MODES must be named modes__in.hsd and should be a Human-friendly Structured
Data (HSD) formatted file (see Appendix A) and must be present in the working directory.

The table below contains the list of the properties, which must occur in the input file modes _in.hsd:

Name Type Condition Default Page
Geometry plm - 12
Hessian p {} 116
SlaterKosterFiles plm -

Additionally optional definitions may be present:

Name Type Condition Default Page
DisplayModes p - 116
Atoms i+lm 1:-1

WriteHSDInput 1 No

RemoveTranslation 1 No

RemoveRotation 1 No

Masses p 116

Geometry Specifies the geometry for the system to be calculated. See p. 12.

Hessian Contains the second derivatives matrix of the system energy with respect to atomic posi-
tions. See p. 116.

SlaterKosterFiles Name of the Slater-Koster files for every atom type pair combination. See
p. 43.

DisplayModes Optional settings to plot the eigenmodes of the vibrations. See p. 116.

Atoms Optional list of atoms, ranges of atoms and/or the species of atoms for which the Hessian
has been supplied. This must be equivalent to the setting you used for MovedAtoms in your
DFTB™ input when generating the Hessian.

115

116 CHAPTER 5. MODES

WriteHSDInput Specifies, if the processed input should be written out in HSD format. (You
shouldn’t turn it off without good reason.)

RemoveTranslation Explicitly set the 3 translational modes of the system to be at 0 frequency.

RemoveRotation Explicitly set the rotation modes of the system to be at O frequency. Note, for
periodic systems, this is usually incorrect (if used for a molecule full inside the central cell,
it may be harmless).

Masses If present, replace the atomic masses from the Slater-Koster files. See p. 116

5.1.1 Hessian{}

Contains the second derivatives of the energy supplied by DFTB®, see p. 19 for details of the
options to generate this data. The derivatives matrix must be stored as the following order: For the
i, j and k directions of atoms 1...n as

J’E J’E J9*E J9*E J*E 0J’E J’E
8)6,‘18)6,‘1 8xj18x,~1 8xk18xl~1 o"?xlg&x“ 8xj28xi1 &xkz(?xil o axkn8xkn

Note: for supercell calculations, the modes are currently obtained at the q = 0 point, irrespective of
the k-point sampling used.

5.1.2 DisplayModes{}

Allows the eigenvectors of the system to be plotted out if present

PlotModes i+Im 1:-1
Animate 1 Yes
XMakeMol 1 Yes

PlotModes Specifies list of which eigenmodes should be plotted as xyz files. Remember that
there are 3N modes for the system (including translation and rotation).

Animate Produce separate animation files for each mode or a single file multiple modes where the
mode vectors are marked for each atom.

XMakeMol Adapt xyz format output for XMakeMol dialect xyz files.

Masses

Provides values of atomic masses for specified atoms, ranges of atoms or chemical species. This is
useful for example to set isotopes for specific atoms in the system.

Mass p

Any atoms not given specified masses will use the default values from the appropriate homonuclear
Slater-Koster file. An example is given below:

5.1. INPUT FOR MODES

Masses {
Mass {
Atoms = H
MassPerAtom [amu] = 1.007825

}
Mass {

Atoms = C
MassPerAtom [amu] = 13.003355

}
Mass {

Atoms = 1:2
MassPerAtom [amu] = 2.014102

}
}

where Atoms specifies the atom or atoms which each have a mass of MassPerAtom assigned.

117

118 CHAPTER 5. MODES

Chapter 6

WAVEPLOT

The WAVEPLOT program is a tool for the visualisation of molecular orbitals. Based on the files cre-
ated by a calculation performed by DFTB™ it is capable of producing three dimensional information
about the charge distribution. The information is stored as cube files, which can be visualised with
many common graphical tools (e.g. VMD or JMOL).

The user controls WAVEPLOT through an input file, choosing which orbitals and charge distributions
should be plotted for which spatial region. Since the information about the shape of the basis
functions is usually not contained in the Slater-Koster files, the coefficients and exponents for the
Slater type orbitals must be entered by the user as part of the input file.

The WAVEPLOT tool offers the following plotting capabilities:
* Total charge density.
* Total spin polarisation.

* Difference between the total charge density and the density obtained by the superposition of
the neutral atomic densities (visualisation of the charge shift).

* Electron density for individual levels.

* Real and imaginary part of the wavefunctions for individual levels.

6.1 Input for WAVEPLOT

The input file for WAVEPLOT must be named waveplot in.hsd and should be a Human-friendly
Structured Data (HSD) formatted file (see Appendix A) and must be present in the working direc-
tory.

The table below contains the list of the properties, which must occur in the input file waveplot _in.hsd:

Name Type Condition Default Page
Options p - 120
DetailedXML S -

EigenvecBin S -

GroundState S Yes

Basis p - 123

119

120 CHAPTER 6. WAVEPLOT

Options Contains the options for WAVEPLOT. See p. 120.

DetailedXML Specifies the name of the file, which contains the detailed XML output of the
DFTB™ calculation (presumably detailed.xml).

EigenvecBin Specifies the name of the file, which contains the eigenvectors in binary format (pre-
sumably eigenvec.bin).

GroundState Read ground or excited state occupation data from the detailed XML output.

Basis Contains the definition of the Slater-type orbitals which were used as basis in the DFTB™
calculation. At the moment, due to technical reasons this information has to be entered by
the user per hand. In a later stage, it will be presumably read in by WAVEPLOT automatically.
See p. 123.

Additionally optional definitions may also be present:

Name Type Condition Default Page
ParserOptions p {} 125

6.1.1 Options

This property contains the options (as a list of properties), which the user can set, in order to
influence the behaviour of WAVEPLOT. The following properties can be specified:

PlottedRegion plm - 122
NrOfPoints 3i -
PlottedKPoints i+Im periodic system -
PlottedLevels i+Im -
PlottedSpins i+lm -
TotalChargeDensity 1 No
TotalSpinPolarisation 1 No
TotalChargeDifference 1 No
TotalAtomicDensity 1 No
ChargeDensity 1 No
RealComponent 1 No
ImagComponent 1 complex wavefunction No
FoldAtomsToUnitCell 1 periodic system No
FillBoxWithAtoms 1 No
NrOfCachedGrids i -1
Verbose 1 No
RepeatBox 3i {111}
ShiftGrid 1 Yes

PlottedRegion Regulates the region which should be plotted. See p. 122.

NrOfPoints Specifies the resolution of the equidistant grid on which the various quantities should
be calculated. The three integers represent the number of points along the three vectors of the
parallelepiped specifying the plotted region. The number of all calculated grid points is the
product of the three integers.

Example:

6.1. INPUT FOR WAVEPLOT 121

NrOfPoints = { 50 50 50 } # 125 000 grid points

PlottedKPoints The list of integers specified here represent the k-points, in which the molecular
orbitals should be plotted. The first k-point in the original DEFTB™ calculation is represented
by "1". The order of the specified k-points does not matter. You can also use the specifica-
tion of the form from:to to specify ranges. (For more details on range specification, see the
MovedAtoms keyword in the DFTB* manual.) The actual list of molecular orbitals to plot
is obtained by intersecting the specifications for PlottedKPoints, PlottedLevels and Plotted-
Spins. The option is ignored if the original calculation was not periodic.

Example:
PlottedKPoints = 135 # The 1st, 3rd and 5th k-point is plotted

PlottedLevels The list of integers specified here represent the states, which should be plotted. The
first (lowest lying) state in the original DFTB™* calculation is represented by "1". The order
of the specified states does not matter. You can also use the specification of the form from:to
to specify ranges. (For more details on range specification, see the MovedAtoms keyword in
the DFTB* manual.) The actual list of molecular orbitals to plot is obtained by intersecting
the specifications for PlottedKPoints, PlottedLevels and PlottedSpins.

Example:
PlottedLevels = 1:-1 # All levels plotted

PlottedSpins The list of integers specified here represent the spins, for which the molecular or-
bitals should be plotted. The first spin in the original DFTB™* calculation is represented by
"1". The order of the specified spins does not matter. You can also use the specification of the
form from:to to specify ranges. (For more details on range specification, see the MovedAtoms
keyword in the DFTB* manual.) The actual list of molecular orbitals to plot is obtained by
intersecting the specifications for PlottedKPoints, PlottedLevels and PlottedSpins.

Example:
PlottedSpins = 1 2 # Both spin-up and spin-down plotted

ChargeDensity If true, the absolute square of the wavefunction is plotted for the selected molec-
ular orbitals.

RealComponent If true, the real component of the wavefunction is plotted for the selected molec-
ular orbitals.

ImagComponent If true, the imaginary component of the wavefunction is plotted for the selected
molecular orbitals. This option is only parsed, if the wavefunctions in the DFTB™ calculation
were complex.

TotalChargeDensity If true, the total charge density of the system is plotted.

TotalSpinPolarisation If true, the total spin polarisation of the system (difference of the spin up
and spin down densities) is plotted. This option is only interpreted if the processed DFTB™
calculation was spin polarised.

TotalChargeDifference If true, the difference between the total charge density and the charge
density obtained by superposing the neutral atomic densities is plotted.

122 CHAPTER 6. WAVEPLOT

TotalAtomicDensity If true, the superposed neutral atomic densities are plotted.
FoldAtomsToUnitCell If true, the atoms are folded into the parallelepiped unit cell of the crystal.

FillBoxWithAtoms If true, the geometry is extended by those periodic images of the original
atoms, which falls in the plotted region or on its borders. It sets FoldAtomsToUnitCell to Yes.

NrOfCachedGrids Specifies how many grids should be cached at the same time. The value -1
stands for as many as necessary to be as fast as possible. Since the plotted grids could even-
tually become quite big, you should set it to some positive non-zero value if you experience
memory problems.

Example:
NrOfCachedGrids =5 # Maximal 5 cached grids

RepeatBox The three integers specify how often the plotted region should be repeated in the gen-
erated cube files. Since repeating the grid is not connected with any extra calculations, this
is a cheap way to visualise a big portion of a solid. You want probably set the FillBoxWith-
Atoms option to Yes to have the atoms also repeated (otherwise only the plotted function is
repeated). In order to obtain the correct picture, you should set the plotted region to be an
integer multiple of the unit cell of the crystal. Please note, that the phase of the wavefunctions
in the repeated cells will be incorrect, except in the I'-point.

Example:
RepeatBox = {222} # Visualising a 2x2x2 supercell
ShiftGrid Whether the grid should be shifted, so that the specified origin lies in the middle of a

cell and the grid fills out the specified plotted region symmetrically. The default is Yes. If set
to No, the specified grid origin will be at the edge of a cell.

Verbose If true, some extra messages are printed out during the calculation.

PlottedRegion
Specifies the region, which should be included in the plot. You can specify it explicitly (as property

list), or let WAVEPLOT specify it automatically using either the UnitCell{} or the OptimalCuboid{}
methods.

Explicit specification Specifies origin and box size explicitly.

Origin 3r -
Box Or -

Origin [length] Specifies the xyz coordinates of the origin as three real values.

Box [length] Specifies the three vectors which span the parallelepiped of the plotted region. The
vectors are specified sequentially (a1, a1y a1; axe azy az; azyc asy az;). You are allowed to
specify an arbitrary parallelepiped with nonzero volume here. Please note, however, that
some visualisation tools only handles cube files with cuboid boxes correctly.

6.1. INPUT FOR WAVEPLOT 123

Example:

PlottedRegion = {
Origin = { 0.0 0.0 0.0 }
Box [Angstrom] = {
125 125 -12.5
125 -12.5 125
-125 125 125

}
}

UnitCell{} For the periodic geometries, this method specifies the plotted region to be spanned
by the three lattice vectors of the crystal. The origin is set to (0 0 0). For cluster geometries, the
smallest cuboid containing all atoms is constructed. For a cluster geometry the UnitCell{} object
may have the following property:

’ MinEdgelLength r 1.0 ‘

MinEdgeLength [lengrh] Minimal side length of the cuboid, representing the plotted region. This
helps to avoid cuboids with vanishing edge lengths (as it would be the case for a linear
molecule).

Example:

PlottedRegion = UnitCell {
MinEdgelLength [Bohr] = 2.0
}

OptimalCuboid{} Specifies the plotted region as a cuboid, which contains all the atoms and
enough space around them, that no wavefunctions are leaking out of the cuboid. This object does
not have any parameters.

Example:

PlottedRegion = OptimalCuboid {}

6.1.2 Basis

The basis definition is done by specifying the following properties:

Resolution r -
ElementNamel p - 125
ElementName2 p - 125

Resolution Specifies the grid distance used for discretising the radial wavefunctions. Setting it
too small, causes a long initialisation time for WAVEPLOT. Setting it too high causes a very
coarse grid with bad mapping and inaccurate charges. Values around 0.01 seem to work fine.
(Units must be in Bohr.)

124 CHAPTER 6. WAVEPLOT

ElementNamel Basis for the first atom type. The name of this property is the name of that atom

type.

ElementName2 Basis for the second atom type. The name of this property is the name of that atom

type.

Before describing the properties (and their sub-properties) in detail, the full basis definition for

carbon (sp) and hydrogen (s) should be presented as example:

Basis = {
Resolution = 0.01
C={ # Basis of the C atom
AtomicNumber = 6
Orbital = { # 2s orbital

AngularMomentum = 0

Occupation = 2

Cutoff = 4.9

Exponents = { 6.00000 3.00000 1.50000 }

Coefficients = {
1.050334389886e+01 2.215522018905e+01 9.629635264776e+00
-4.827678012828e+01 -5.196013014531e+00 -2.748085126682e+01
3.072783267234e+01 -1.007000163584e+01 8.295975876552e-01

}

}
Orbital = { # 2p orbital

AngularMomentum = 1

Occupation = 2

Cutoff = 5.0

Exponents = { 6.00000 3.00000 1.50000 }

Coefficients = {
-2.659093036065e+00 -6.650979229497e+00 -1.092292307510e+01
2.190230021657e+00 -9.376762008640e+00 -5.865448605778e-01
8.208019468802e+-00 -2.735743196612e+00 2.279582669709e-01

}
}
}
H={ # Basis for the H atom
AtomicNumber =1
Orbital = { # 1s orbital
AngularMomentum = 0
Occupation =1
Cutoff = 4.2
Exponents = { 2.00000 1.00000 }
Coefficients = {
1.374518455977e+01 1.151435212242e4-01 2.072671588012e+00
-1.059020844305e+01 3.160957468828e+00 -2.382382105798e-01
}
}
}

6.1. INPUT FOR WAVEPLOT 125

Basis for an atom type

The actual basis for every atom type is specified as a property with the name of that type:

AtomicNumber i -
Orbital p - 125

AtomicNumber The atomic number of the species. This is not needed in the actual calculations,
but for creating proper cube-files.

Orbital Contains the parameters of the orbitals. For every orbital a separate Orbital block must be
created. See below.

Orbital For every orbital there is an orbital block which specifies the radial wavefunction. Thereby
the following properties must be used:

AngularMomentum i -
Occupation r -
Cutoff r -
Exponents r+ -
Coefficients r+ -

AngularMomentum Angular momentum of the current orbital. (s -0, p—1,d -2, f - 3)

Occupation Occupation of the orbital in the neutral ground state. (Needed to obtain the right
superposed atomic densities.)

Cutoff Cutoff for the wave function. You should choose a value, where the value of 4772 |R(r)|*
drops below 10~* or 107>, R(r) is the radial part of the wave function. If you do not have
the possibility to visualise the radial wave function, take the half of the longest distance, for
which an overlap interaction exists in the appropriate homonuclear Slater-Koster file. (Value
must be entered in Bohr.)

Exponents The radial wave function with angular momentum / has the form:

Nexp Mpow

Ri(r)=Y Y iyt le 6.1)
i=1 j=1

This property defines the multiplication factors in the exponent (¢).

Coefficients This property contains the coefficients ¢;; as defined in equation (6.1). The sequence
of the coefficients must be as follows:

ci1C12 ... Clnpow Cc21 C22 ... Cznpow e
6.1.3 ParserOptions

This block contains the options, which are effecting only the behaviour of the HSD parser and are
not passed to the main program.

IgnoreUnprocessedNodes 1 No
StopAfterParsing 1 No

126 CHAPTER 6. WAVEPLOT

IgnoreUnprocessedNodes By default the code stops if it detects unused or erroneous keywords
in the input. This dangerous flag suspends these checks. Use only for debugging purposes.

StopAfterParsing If set to Yes, the parser stops after processing the input and written out the
processed input to the disc. It can be used to make sanity checks on the input without starting
an actual calculation.

Chapter 7

SETUPGEOM

The program utility SETUPGEOM can help in preparing the input geometry for transport calcula-
tions, following the rules specified in the Transport section. Starting from a geometry that can be
the output of a previous relaxation step or any other building step, SETUPGEOM can be used to
specify the system partitioning into contacts and device regions and reorder the atom numbers such
that the device is placed before the contacts. Additionally the tool reorders the atoms of the two
PLs of each contact or can create the second PL if only one is specified. Finally, the device region
is reordered and partitioned into PLs for more efficient Green’s function calculations. A practical
example is discussed in DFTB™* recipes.

7.1 Input for SETUPGEOM

The input of the code must be named setup _in.hsd and should be a Human-friendly Structured
Data (HSD) formatted file (see Appendix A).

The file is similar to the DFTB* input, where just 2 sections are needed. The table below contains
the list of the properties, that must occur in the input file:

Name Type Condition Default Page
Geometry plm - 12
Transport p {}

Geometry Specifies the geometry for the system to be calculated. See p. 12.

7.1.1 Transport{}

The transport block must specify the atoms in each contact. An example of the Transport section is
reported below:

Transport {
Contact {
Id = "source"
Atoms [zeroBased] = {9:24 56:78}
ContactVector = 0.0 0.0 3.78
SpecifiedPLs = 2

127

128 CHAPTER 7. SETUPGEOM

}

Contact {
Id = "drain"
Atoms [zeroBased] = {81:100}
ContactVector = 0.0 0.0 3.78
SpecifiedPLs = 2

}

Task = SetupGeometry{
SlaterKosterFiles = type2names{

=

TruncateSKRange = {
SKMaxDistance [AA] = 5.0
HardCutOff = Yes

}

}
}

Id S

Atoms li -
SpecifiedPLs i lor2 2
ContactVector 3r -

TruncateSKRange p
SlaterKosterFiles p

Id Specifies a unique contact name.

Atoms Sets the list of atoms belonging to the named contact. This list can be easily obtained using
some external atomic manipulation tool like for instance Jmol.
NOTE the modifier [zeroBased] specifing that the defined atom numbers starts from O rather
than 1. Use [oneBased] or no modifier for normal numbering starting from 1. In general
follows the rules for MovedAtoms in section 2.3.1.

SpecifiedPLs Specifies the number of PLs given for the named contact. If this value is 2 (default)
the total number of atoms in the contact are divided by 2 and the 2nd PL is reordered accord-
ing to the 1st with the help of ContactVector. If this value is 1, the correct numbers of PLs
are created according to the interaction cutoff distance.

ContactVector Sets the translation vector connecting the 2 PLs along the transport direction.
Since contact must be aligned to a cartesian axis, so must be this vector. Different contact
can be in different directions. Also notice that the vector must be specified along the positive
axis direction.

TruncateSKRange This section is the same as that described in section 2.4.

SlaterKosterFiles This section is the same as that described in section 2.4. The SK files are used
to compute the cutoff distance.

7.1. INPUT FOR SETUPGEOM 129

7.1.2 Code output

The code writes two files, processed.gen and transport.hsd. The first file is the processed geome-
try, reordered according to the needs of transport calculations. NOTE that coordinates are folded
to the unit cell such that all fractional coordinates are in the range 0 to 1. The structure is first
translated such that all absolute coordinates have posive values. This step is important in order to
take properly into account the periodic images. The file transport.hsd contains the details of the
geometry partitioning for transport, as described in the Transport section and that can be included in
the input file. For convenience this file also contains the block TruncateSKRange in order to make
the Hamiltonian consistent with the MaxSKCutoff set in there.

130 CHAPTER 7. SETUPGEOM

Chapter 8

DFTB™ API

You can compile DFTB™ into a library and access some of its functionality via an API. Currently
the API offers high level access only: you can set the current geometry and extract energy and
forces for that geometry.

8.1 Building the library

In order to compile the DFTB™ library with the public API, set the WITH _API option to TRUE in
the config.cmake configuration file. Then (from a separate build folder) build and install the code
as ususal

cmake /PATH/TO/DFTBPLUS/SOURCE/FOLDER
make -

After compilation, you can test the api functionality specifically with
ctest -R 'api '

Finally, you can install the library with the usual install command
make install

After the installation, the library (libdftbplus.a) can be found in the lib/ folder of the installation
directory. Depending on the build options this folder may contain several other libraries as well,
which must be linked additional to libdftbplus.a to your binary.

8.2 General guidelines

Although the DFTB+ library contains nearly all internal routines of the DFTB+ code, you should
access the code functionality only via the provided API and not by calling internal routines di-
rectly. We aim to keep the API stable over time, but the internal routines themselves can change
without notice between releases. The API version can be found in the APl _VERSION file in the
prog/dftb+/api/mm folder. We use semantic versioning, a change in the major (first) version num-
ber indicates backwards incompatible changes, while changes in the minor (second) version number
indicate backwards compatible extensions of the APL.

131

132 CHAPTER 8. DFTB* API

When using the API, we suggest that ParserVersion should be set in order to ensure that you can
maintain backwards compatibility with later versions of DFTB+.

The Fortran interface is documented in the source code file prog/dftb+/api/mm/mmapi.F90,
while prog/dftb+/api/mm/capi.F90 gives the bindings for calling from C. DFTB+ uses atomic
units internally, hence exchanged values should be in this unit system (however HSD formatted
data can carry unit modifiers, see examples of input parsing for details).

Appendix A

The HSD format

The Human-friendly Structured Data (HSD) format is a structured input format, which can be bi-
jectively mapped onto a subset of the XML-language. Its simplified structure and notation should
make it a more convenient user interface than reading and writing XML tags. This section contains
a brief overview of the most important aspects of this format.

An input file in the HSD format consists basically of property assignments of the form
Property = value

where the value value was assigned to the property Property. The value must be one of the following
types (detailed description of each follows later on):

e Scalar, such as

integer

real

logical

string
* list of scalars

¢ method

list of further property assignments

An unquoted hash mark (#) is interpreted as the start of a comment, everything after it, up to the
end of the current line, is ignored by the parser (hash marks inside of quotes are taken as literals not
comments):

Entire line with comment
Propl = "hell#00" # Note, that the first hashmark is quoted!

The name of the properties, the methods and the logical values are case insensitive, so the assign-
ments

133

134 APPENDIX A. THE HSD FORMAT

Propl = 12
prOP1 = 12
Prop2 = Yes
Prop2 = YES

are pairwise identical. Quoted strings (specified either as a value for a property or as a file name),
however, are case sensitive.

Due to technical issues, the maximal line length is currently limited to 1024 characters. Lines longer
than this are chopped without warning.

If a property, which should only appear once, is defined more than once, the parser uses the first def-
inition and ignores all the other occurrences. Thus specifying a property in the input a second time,
does not override the first definition. (For advanced use the HSD syntax also offers the possibility
of conditional overriding/extending of previous definitions. For more details see A.6.)

A.1 Scalars and list of scalars

The following examples demonstrate the assignments with scalar types:

Somelnt = 1

Somelnt2 = -3
SomeRealFixedForm = 3.453
SomeRealExpForm = 2.12e-45

Logicall = Yes
Logical2 = no
SomeString = "this is a string value"

As showed above, real numbers can be entered in either fixed or exponential form. The value for
logical properties can be either Yes or No (case insensitive). Strings should always be enclosed in
quotation marks, to make sure that they are treated as one string and that they are not interpreted by
the parser:

Stringl = "quoted string"

String2 = this value is actually a list of 9 strings # list of strings!

String3 = "Method { ;" # This is a string assignment

String4 = Method { # This is syntactically incorrect, since
it tries to assign a method to String4

A list of scalars is created by sequentially writing the scalars separated by one or more spaces:

PlottedLevels = 12 3
Origin = 0.0 0.0 0.0
ConfirmltTwice = Yes Yes
SpeciesNames = "Ga" "As"

The assignments statements are usually terminated by the end of the line. If the list of the assigned
values goes over several lines, it must be entered between curly (brace) brackets. In that case,
instead of the line end, the closing bracket will signal the end of the assignment. It is allowed to put
a list of scalars in curly brackets, even if it is only one line long.

A.2. METHODS AND PROPERTY LISTS 135

PlottedLevels = {
123

}

Origin = { 0.0

0.00.0}

Short ={123}

If you want to put more than one assignment in a line, you have to separate them with a semi-colon:
Variable = 12; Variable2 = 3.0

If a property should be defined as empty, either the empty list must be assigned to it or it must be
defined as an empty assignment terminated by a semi-colon:

EmptyProperty = {}
EmptyProperty2 = ;

Please note, that explicitly specifying a property to be empty is not the same as not having specified
it at all. In the latter case, the parser substitutes the default value for that property (if there is a
default for it), while in the first case it interprets the property to be empty. If a property without
default value is not specified, the parser stops with an appropriate error message.

A.2 Methods and property lists

Besides the scalar values and the list of scalars, the right hand side of an assignment may also con-
tain a method, which itself may contain one or more scalar values or further property assignments
as parameters:

Diagonaliser = LapackDAC {} # Method without further params

PlottedLevels = Range { 1 3} # Range needs two scalar params

PlottedRegion = UnitCell { # UnitCell needs a property list
MinEdgelLength = 1.0 # as parameter
SomeOtherProperty = Yes

}

The first assignment above is an example, where the method on the right hand side does not need
any parameters specified. Please note, that even if no parameters are required, the opening and
closing brackets after the method are mandatory. If the brackets are missing, the parser interprets
the value as a string.

In the second assignment, the method Range needs only two integers as parameters, while for
the method UnitCell several properties must be specified. A method may contain either nothing
or scalars or property assignments, but never scalars and property assignments together. So the
following assignment would be invalid:

InvalidSpecif = SomeMethod {
123
Propertyl = 12
"Some strings here"

}

136 APPENDIX A. THE HSD FORMAT

Very often a value for the property is represented by a list of further property assignments (as above,
but without naming an explicit method beforehand). In that case, the property assignments must be
put between curly brackets (property list):

Options = {
SubOptionl = 12
Suboption2 = "string"

}

A.3 Modifiers

Each property may carry a modifier, which changes the interpretation of the assigned value:
LatticeConstant [Angstrom] = 12.23

Here, the property LatticeConstant possesses the Angstrom modifier, so the specified value will be
interpreted to be in Angstrom instead of the default length unit. Specifying a modifier for a property
which is not allowed to carry one leads to parsing error.

The syntax of the HSD format also allows methods (used as values on the right hand side of an
assignment) to carry modifiers, but this is usually not used in the current input structures.

Sometimes, the assigned value to a property contains several values with different units, so that more
than one modifiers can be specified. In that case, the modifiers must be separated by a comma.

VolumeAndChargePerElement [Angstrom”3,au] = {
1.2 0.3 # first element
42 0.1 # second element

}

You have to specify either no modifier or all modifiers. If you want specify the default units for
some of the quantities, you can omit the name of the appropriate modifier, but you must include the
separating comma:

Specifying the default unit for the charge. Note the separating comma!
VolumeAndChargePerElement [Angstrom”3,] = {

1.2 0.3 # first element

42 0.1 # second element

}

Specifying not enough or too many modifiers leads to parser error.

A.4 File inclusion

It is possible to include files in an HSD-formatted input by using the <<< and <<+ operators.
The former includes the specified file as raw text without parsing it, while latter parses the included
text:

A.5. PROCESSING 137

Geometry = GenFormat {
<<< "geo_start.gen"
}
Basis = {
<<+ "File_containing the property definitons for the basis"

}

The file included with the <<+ operator must be a valid HSD document in itself.

A.5 Processing

After having parsed and processed the input file, the parser writes out the processed input to a
separate file in HSD format. This file contains the internal representation for all properties, which
can be specified by the user. In particular, all default values are explicitly set and all automatic
definitions (e.g. ranges) are converted to their internal representations.

Assuming the following example as input

Lattice contant specified in Angstrom.
Internal representation uses Bohr, so it will be converted.
LatticeConstant [Angstrom] = 12.0

This property is not set, as its commented out, so the
default value will be set for this (let's assume, it's Yes)
#DoAProperJob = No

Plotted levels specified as a range with parameter 1:3.
This will be replaced by an explicit listing of the levels
PlottedLevels = { 1:3 }

the parsed and processed input (written to a special file) should look something like

LatticeConstant = 22.676713499923075
DoAProperJob = Yes
PlottedLevels = {

123

}

If you want to reproduce your calculation later, you should use this processed input. It should give
you identical results, even if the default setting for some properties had been changed in the code.

A.6 Extended format

As stated earlier, if a property, which should be defined only once, occurs more than once in the
input, the parser uses per default the first definition and ignores all the others. Sometimes this is not
the desired behaviour, therefore, the HSD format also offers the possibility to override properties
that were set earlier. This feature can be very useful for scripts which are generate HSD input based
on some user provided template. By just appending a few lines to the end of the user provided input

138 APPENDIX A. THE HSD FORMAT

the scripts can make sure that certain properties are set correctly. Thus, the script can modify the
user input, without having to parse it at all.

The parser builds internally an XML DOM-tree from the HSD input. For every property or method
name an XML tag with the same name (but lowercased) is created, which will contain the value of
the property or the method. If the value contains further properties or methods, new XML tags are
created inside the original one. Shortly, the HSD input is mapped on a tree, whereas the assignment
and the containment (equal sign and curly brace) are turned into a parent-child relationships.! As
an example an HSD input and the corresponding XML-representation is given below:

LevelOEleml =1 <levelOelem1>1</levelOelem1>
LevelOElem2 = {123} <levelOelem2>1 2 3</levelOelem2>
LevelOElem3 = { <levelOelem3>
LevellEleml = 12 <levellelem1>12</levellelem1>
LevellElem2 = Level2Elem1 { <levellelem2>
<level2elem1>
Level3Elem1 = "abcd" <level3elem1>"abcd" < /level3elem1>
Level3Elem2 = { <level3elem2>
Level4Eleml = 12 <leveldelem1>12< /level4elem1>
} < /level3elem2>
} </level2elem1>
} </levellelem2>

< /levelOelem3>

By prefixing property and method names, the default behaviour of the parser can be overridden.
Instead of creating a new tag (on the current encapsulation level) with the appropriate name, it will
look for the first occurrence of the given tag and will process that one. Depending of the prefix
character, the tag is processed in the following ways:

+: If the tag exists already, it’s value is modified, otherwise the parser stops.

?: If the tag exists already, it’s value is modified, otherwise the parser ignores the prefixed HSD
construct.

*: If the tag exists already, it’s value is modified, otherwise it is created (and then it’s value is
modified).

~
.o

If the tag does not exist yet, it is created and modified, otherwise the prefixed HSD construct is
ignored.

!: The tag is newly created and modified. If it exists already, the old occurrence is deleted first.

The way the value of the tag is going to be modified, is ruled by the constructs inside the prefixed
property or method name. If the parser finds non prefixed constructs here, the appropriate tags are
just added, otherwise the behaviour is determined by the rules above, just acting one level deeper in
the tree. The following examples should make this a little bit more clear.

* Changing the value of LevelOElem1 to 3. If the element does not exist, it should be created
with the value 3.

'In the internal tree representation of the HSD input there is no difference between properties and methods, both are
just elements capable to contain some value or further elements. The differentiation in the HSD input is artificial and is
only for human readability (equal sign after property names, curly brace after method names),

A.6. EXTENDED FORMAT 139

I[LevelOEleml = 3

* Changing the value of LevelOElem3/LevellElem1 to 21 (the slash indicates the parent-child
relationship). If the element does not exist, stop with an error message:

Make sure the containing element exists. If yes, go inside, otherwise die.
+LevelOElem3 = {
Set the value of LevellEleml or die, if it does not exist.
+LevellEleml = 21

}

Please note, that each tag in the path must be prefixed. Using the following construct instead
of the original one

Not prefixed, so it creates a new tag with empty value
LevelOElem3 = {
The new tag doesn’t contain anything, so the parser stops here
+LevellEleml = 21

}

would end with an error message. Since LevelOElem1 is not prefixed here, a tag is created for
it with an empty value (no children). It does not matter, whether the tag already existed before
or not, a new tag is created and appended as the last element (last child) to the current block.
Then the parser is processing its value. Due to the +LevellElem1 directive it is looking for a
child tag <levellelem1>. Since the tag was newly created, it does not contain any children,
so the parser stops with an error message.

* Create a new tag LevellElem3 inside LevelOElem3 with some special value. If the tag already
exists, replace it.

Modifing the children of LevelOElem3 or dying if not present
+LevelOElem3 = {
Replacing or if not existent creating LevellElem3
[LevellElem3 = NewBlock {
NewValuel = 12
}

This example also shows, that the value for the new property can be any arbitrary complex
HSD construct.

* Provide a default value "string" for LevelOElem3/LevellElem2/Level2Elem1/Level3Elem1.
If the tag is already present do not change its value.

Modify LevelOElem3 or create it if non-existent
*LevelOElem3 = {
Modify LevellElem2 and Level2Elem1 or create them if non-existent
*LevellElem2 = *Level2Elem1 {
Create Level3Elem1 if non-existent with special value.
/Level3Eleml = "string"

}
}

140 APPENDIX A. THE HSD FORMAT

* If LevelOElem3/LevellElem2 has the value Level2Elem1, make sure that Level3Eleml in it
exists, and has "" as value. If LevellElem?2 has a different value, do not change anything.

If LevelOElem3 is present, process it, otherwise skip this block
?LevelOElem3 = {
The same for the next two containers
?LevellElem2 = ?Level2Elem1 {
Create or replace Level3Elem1
[Level3Eleml = ""

}
}

Appendix B

Unit modifiers

The DFTB™ code uses internally atomic units (with Hartree as the energy unit). The value of every
numerical property in the input is interpreted to be in atomic units (au), unless the property carries
a modifier.

The allowed modifiers and the corresponding conversion factors are given below.! (The modifiers

are case insensitive).

Length:

Angstrom, AA (for Angstrom)

Meter, m
pm
Bohr, au

Mass:
amu
au

da
dalton

Volume:
Angstrom”\3, AA"3
meter3, m”"\3
pm”'3

bohr”3, au

Energy:
Rydberg, Ry
Electronvolt, eV
kcal /mol
Kelvin, K
cm”-1

Joule, J
Hartree, Ha, au

0.188972598857892E+01
0.188972598857892E+11
0.188972598857892E-01

1.000000000000000E+00

0.182288848492937E+04
1.000000000000000E+00
0.182288848492937E+04
0.182288848492937E+04

0.674833303710415E+401
0.674833303710415E+31
0.674833303710415E-05

1.000000000000000E+00

0.500000000000000E+00
0.367493245336341E-01
0.159466838598749E-02
0.316681534524639E-05
0.455633507361033E-05
0.229371256497309E+18
1.000000000000000E+00

I'The conversion factors listed here were calculated with double precision on i686-linux architecture. Depending on
your architecture, the values used there may deviate slightly.

141

142

Force:

eV /Angstrom, eV/AA
Joule/meter, J/m
Hartree/Bohr, Ha/Bohr, au

Time:
femtosecond, fs
picosecond, ps
second, s

au

Charge:
Coulomb, C

au, €

Velocity:
au

m/s
pm/fs
AA/ps

Pressure:
Pa
au

Frequency:
Hz

THz

cm”-1

au

Electric field strength:
v/m
au

Dipole moment:
CoulombMeter, Cm
Debye

au

Angular units:
degrees, deg
turns

gradians
radians, rad

APPENDIX B. UNIT MODIFIERS

0.194469064593167E-01
0.121378050512919E+08
1.000000000000000E+00

0.413413733365614E+02
0.413413733365614E+05
0.413413733365614E+17
1.000000000000000E+00

0.624150947960772E+19
1.000000000000000E+00

1.000000000000000E+00
0.457102857516272E-06
0.457102857516272E-03
0.457102857516272E-04

0.339893208050290E-13
1.000000000000000E+00

0.241888432650500E-16
0.241888432650500E-04
0.725163330219952E-06
1.000000000000000E+00

0.194469063788953E-11
1.000000000000000E+00

0.117947426715764E+30
0.393430238326893E+00
1.000000000000000E+00

1.745329251994330E-02
6.283185307179586
1.570796326794897E-002
1.000000000000000E+00

Appendix C

Description of the gen format

The general (gen) format can be used to describe clusters, supercells and more exotic boundary
conditions. It is based on the xyz format introduced with xmol, and extended to periodic and
helical structures. Unlike some earlier implementations of gen, the format should not include any
neighbour mapping information.

The first line of the file contains the number of atoms, n, followed by the type of geometry. C for
cluster (non-periodic), S for supercell in Cartesian coordinates or F for supercell in fractions of the
lattice vectors and H for one-dimensional periodic helical cells. The supercells are periodic in 3
dimensions, while helical cells repeat along the z direction (eventually) in addition to an optional
rotational symmetry around that axis.

The second line contains the chemical symbols of the elements present separated by one or more
spaces. The following n lines contain a list of the atoms. The first number is the atom number in the
structure (this is currently ignored by the program). The second number is the chemical type from
the list of symbols on line 2. Then follow the coordinates. For S and C format, these are x, y, z in
A, but for F they are fractions of the three lattice vectors.

If the structure is a supercell, the next line after the atomic coordinates contains a coordinate origin
in A. The last three lines are the supercell vectors in A. For helical cells, there is a an origin line, and
then an extra line containing three numbers (the repeat length of the cell along z in A, the helical
angle in degrees and the order of the C, rotational symmetry around that axis). The symmetry of
the resulting structure is the tensor product of the helical translation/twist axis and the C, rotation
operation. It is assumed that the screw axis is aligned parallel to z. These boundary condition lines
are not present for cluster geometries.

Example: Geometry of GaAs with 2 atoms in the fractional supercell format

2 F
This is a comment
Ga As
11 0.0 0.0 0.0
22 0.250.250.25
0.000000 0.000000 0.000000
2.713546 2.713546 0.
0. 2.713546 2.713546
2.713546 0. 2.713546

A single CH; chain deformed into a helix with a 1.25 A cell height, twisting by 30° for each

143

144 APPENDIX C. DESCRIPTION OF THE GEN FORMAT

translation along z by this ammount.

3 H

CH

11 1.016566615 1.777924612 0.000000000
22 1.960988580 2.020972633 0.5133666820
32 0.751006714 2.717254122 -0.5117698570
000

1.250 30.01

Note The DFTB™ input parser as well as the dptools utilities will ignore any lines starting with a #
comment mark.

Appendix D

Atomic spin constants

These are suggested values for some atomic spin constants (W values) as given in reference [61],
only the first two decimal places of the finite spin constants are numerically significant. These
constants may eventually be included in the Slater-Koster files directly. Check the documentation
of the Slater-Koster files required for a calculation to decide whether to use the LDA or PBE-GGA
spin constants. Spin constants for range-separated functionals are given together with the respective

Slater-Koster files at www.dftb.org.

w LDA PBE
s p d s p d
H s | -0.064 -0.072
C s | -0.028 -0.024 -0.031 -0.025
p | -0.024 -0.022 -0.025 -0.023
N s | -0.030 -0.026 -0.033 -0.027
p | -0.026 -0.025 -0.027 -0.026
0] s | -0.032 -0.028 -0.035 -0.030
p | -0.028 -0.027 -0.030 -0.028
Si s | -0.018 -0.013 0.000 | -0.020 -0.015 0.000
p | -0.013 -0.012 0.000 | -0.015 -0.014 0.000
d | 0.000 0.000 -0.019 | 0.002 0.002 -0.032
S s | -0.019 -0.016 0.000 | -0.021 -0.017 0.000
p | -0.016 -0.014 0.000 | -0.017 -0.016 0.000
d | 0.000 0.000 -0.010| 0.000 0.000 -0.080
Fe s | -0.013 -0.009 -0.003 | -0.016 -0.012 -0.003
(3d’4s"y p | -0.009 -0.011 -0.001 | -0.012 -0.029 -0.001
d | -0.003 -0.001 -0.015 | -0.003 -0.001 -0.015
Ni s | -0.009 -0.009 -0.003 | -0.016 -0.012 -0.003
p | -0.009 -0.010 -0.001 | -0.012 -0.022 -0.001
d | -0.003 -0.001 -0.017 | -0.003 -0.001 -0.018

145

www.dftb.org

146 APPENDIX D. ATOMIC SPIN CONSTANTS

Appendix E

Slater-Kirkwood dispersion constants

The following table contains recommended dispersion constants for some elements with the Slater-
Kirkwood dispersion model (see p. 51). The values have been tested for biological systems, C, N,
O and H predominantly for DNA [28]. If you would like to calculate different systems or you're
looking for other elements, check references [62] and [63]. The values of the atomic polarisabilities
and cutoffs are given for zero, one, two, three, four and more than four neighbours.

Element

Polarisability [A3]

Cutoff [A]

Chrg

Note

nowITmNZOo

0.560 0.560 0.000 0.000 0.000 0.000
1.030 1.030 1.090 1.090 1.090 1.090
1.3821.382 1.382 1.064 1.064 1.064
0.386 0.386 0.000 0.000 0.000 0.000
1.600 1.600 1.600 1.600 1.600 1.600
3.000 3.000 3.000 3.000 3.000 3.000

3.83.83.83.83.83.8
3.83.83.83.83.83.8
3.83.83.83.83.83.8
353535353535
4747747474747
4.74.74.74.74.74.7

3.15
2.82
2.50
0.80
4.50
4.80

POy only
S, not SO,

147

148 APPENDIX E. SLATER-KIRKWOOD DISPERSION CONSTANTS

Appendix F

DftD3 dispersion constants

These are suggested dispersion values for some of the DFTB parameterizations for use with the
DftD3 model (see p. 52). The table below gives the old defaults for DFTB3, those for which the
30B parameters were fitted at the halogen correction stage, along with choices for the various OB2
parameterizations for range separated calculations.

Becke-Johnson damping | old default 30B OB2 (base) OB2 (shift) OB2 (split)
ai 0.5719 0.746 0.717 0.816 0.497
a 3.6017 4.191 2.565 2.057 3.622
56 1.0 1.0 1.0 1.0 1.0
S8 0.5883 3.209 0.011 0.010 0.010

Note: for the H5 corrected model, the DftD3 zero-damping parameters given on page 65 should be

used.

149

150 APPENDIX E. DFTD3 DISPERSION CONSTANTS

Appendix G

DftD4 dispersion constants

These are suggested dispersion values for some of the DFTB parameterizations for use with the
D4 model (see p. 54). The table below gives parameterizations with and without non-additive
dispersion included.

Table G.1: Becke—Johnson damping parameters for various Slater—Koster parametrizations of the
DFTB hamiltonian. Parametrizations are done both with non-additive contributions and without.

parameters S6 S8 59 a az [ap]
3o0b 1 0.4727337 0 0.5467502 4.4955068
1 0.6635015 1 0.5523240 4.3537076
matsci 1 2.7711819 0 0.4681712 5.2918629
1 3.3157614 1 0.4826330 5.3811976
mio 1 1.1948145 0 0.6074567 4.9336133
1 1.2916225 1 0.5965326 4.8778602
ob2(base) 1 2.7611320 0 0.6037249 5.3900004
1 2.9692689 1 0.6068916 5.4476789
pbc 1 1.7303734 0 0.5546548 4.7973454
1 2.1667394 1 0.5646391 4.9576353

151

152 APPENDIX G. DFTD4 DISPERSION CONSTANTS

Appendix H

Atomic onsite constants

These are suggested values for some atomic on-site correction constants as given in reference [48],
see p. 66.

\'Y PBE
s p d
Hyp 0.000
Hyy 0.000

0.00000 0.04973
0.04973 -0.01203
0.00000 0.10512
0.10512 0.02643
0.00000 0.06816
0.06816 -0.00879
0.00000 0.12770
0.12770 0.03246
0.00000 0.08672
0.08672 -0.00523
0.00000 0.14969
0.14969 0.03834
0.00000 0.07501 0.00398
0.07501 0.00310 0.01100
0.00398 0.01100 -0.01792
0.00000 0.11653 0.03915
0.11653 0.03058 0.04979
0.03915 0.04979 0.01582
0.00000 0.02659 -0.00587
0.02659 -0.01297 -0.00523
-0.00587 -0.00523 -0.00750
0.00000 0.06881 0.01239
0.06881 0.01640 0.01144
0.01239 0.01144 0.02604
0.00000 0.03752 0.00073
0.03752 -0.00505 -0.00002
0.00073 -0.00002 0.00531
0.00000 0.06928 0.01339
0.06928 0.01677 0.01228
0.01339 0.01228 0.02519

Tiyy

Ty

Aupp

Augy

w2
=
=
QAT 2 AT “2|(AT 2 AW 2T 2 AWM at ot ak T v o «lvu v

153

154 APPENDIX H. ATOMIC ONSITE CONSTANTS

Appendix I

Hartree Hubbard constants for pp-RPA
calculations

These are suggested values for some Hubbard-like parameters employed in particle-particle Ran-
dom Phase Approximation calculations (see p. 75):

Element HHubbard

O 0.59637
C 0.49748
N 0.56235
H 0.68353

155

156 APPENDIX I. HARTREE HUBBARD CONSTANTS FOR PP-RPA CALCULATIONS

Appendix J

Description of restart files

J.0.1 charges.bin / charges.dat

Initial charges and the current orbital charges are stored in these files. Both contain the same
information, but charges.bin is stored as unformatted binary data, while charges.dat is a text file.

The first line of the file is:
version tBlockCharges tImaginaryBlock nSpin CheckSum

Where version is currently 3, tBlockCharges and tImaginaryBlock are logical variables as to whether
real and imaginary block charges are present. nSpin is the number of spin channels (1, 2 or 4 for spin
free, collinear and non-collinear) and checksum is the totals for the charges in each spin channel.

The subsequent nAtom X nSpin lines contain the individual orbital occupations for each atom in
spin channel 1 (then 2 ... 4, if present).

If tBlockCharges is true, then the on-site block charges for each atom and spin channel are stored,
followed by the imaginary part if tImaginaryBlock is true.

Examples of the contents of charges.dat are given below for an H,O molecule in the yz aligned with
its dipole along y. Using the mio-1-1 Slater-Koster set, this file would contain:

3FF 1 8.0000000000000018
6.5926151655316767 0.0000000000000000 0.0000000000000000 0.0000000000000000
0.70369241723366482
0.70369241723466003

When OrbitalResolved = No. So, this is version 3 of the format, without block charges and it is spin
free with 8 electrons. The electronic charges are grouped into the lowest atomic orbitals of each
atom in this case. There is some small numerical noise in some of these these values (< 10~14).

With OrbitalResolved = Yes, the oxygen has 1.7 2s electrons and 4.83 2p orbitals (electrons listed
in the lowest labelled state in each shell).

3FF 1 8.0000000000000018
1.7335403452609417 4.8346073382345685 0.0000000000000000 0.0000000000000000
0.71592615825295036
0.71592615825154060

While for a pseudo-SIC calculation, where the net spin is 0:

3TF 2 8.0000000000000018 0.0000000000000000
1.7566193972978825 1.7147230821039328 1.2018994732683752 2.0000000000000013
0.66337902366501833
0.66337902366479040

157

158 APPENDIX J. DESCRIPTION OF RESTART FILES

0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000

0.0000000000000000

1.7566193972978825 -0.28455491415632111 7.9592308124161928E-014 -7.7482799007142168E-027
-0.28455491415632111 1.7147230821039328 5.6922736516833719E-014 4.1776281206242259E-026
7.9592308124161928E-014 5.6922736516833719E-014 1.2018994732683752 -4.6749196043609904E-016
-7.7482799007142168E-027 4.1776281206242259E-026 -4.6749196043609904E-016 2.0000000000000013
0.66337902366501833

0.66337902366479040

0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000

0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000

0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000

0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000

0.0000000000000000
0.0000000000000000

Note the 0 blocks for the spin polarisation in channel 2, and also that the diagonal of the block
charges matches the orbital charges for the atoms.

J.0.2 contact.bin / contact.dat

Self-consistent transport calculations require contact potential shifts. The format of the shiftcont *
files are either ascii (.dat) or binary (.bin). The shiftcont *.dat files have the following format:

The first two lines of the file are:

version
nContactAtoms maxShells spinChannels tBlockCharges
* version: The file format is currently version 1
» nContactAtoms: Number of atoms in the contact
* maxShells: Maximum number of angular shells on the contact atoms
* spinChannels: Number of spin channels in the system (1 for spin free, 2 for spin polarized)

* tBlockCharges: a logical flag (T/F) as to whether block charges are present in the file (these
are required for +U calculations).

This is then followed by lines for

¢ The number of orbitals on the atoms
¢ Shifts for the shells of the atoms

* Charges for individual orbitals

If tBlockCharges is true, the block shifts and charges are then given for each spin channel and atom.

Finally the Fermi level(s) for the contact are printed (this can be over-ridden in the input at calcula-
tion time, see the FermilLevel keyword in section 4.2.2).

An earlier format for contacts is also supported. This lacks the first line containing the the version
number, along with the logical flag and sections relating to block charges.

Appendix K

Publications to cite

The following publications should be considered for citation, if you are publishing any results cal-
culated by using DFTB*XT / DFTB™.

TraNaS OpenSuite or DFTB*XT code [1, 2, 3]

non-SCC DFTB [64], [65]
SCC DFTB [49]
Collinear spin polarisation [66]
Non-collinear spin polarisation [67]
Spin orbit coupling [67]
QM/MM coupling (external charges) [68], [69]
Van der Waals interaction (dispersion) [28]
DFTB+U [25]
3rd order corrections [38]
linear-response TD-DFTB [51]
REKS calculations [56]

159

160 APPENDIX K. PUBLICATIONS TO CITE

Bibliography

[1] TraNaS OpenSuite, tranas.org/opensuite. 7, 159

[2] B. Hourahine et al., “DFTB+, a software package for efficient approximate density functional
theory based atomistic simulations,” J. Chem. Phys. 152, 124101 (2020). 7, 9, 159

[3] A. Pecchia, G. Penazzi, L. Salvucci, and A. D. Carlo, “Non-equilibrium Green’s functions
in density functional tight binding: method and applications,” New Journal of Physics 10,
065022 (2008). 7, 94, 100, 159

[4] T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z.
Hajnal, A. Di Carlo, and S. Suhai, “Atomistic simulations of complex materials: ground-state
and excited-state properties,” J. Phys. Cond. Matter 14, 3015 (2002). 9

[5] A. Kovalenko, S. Ten-no, and F. Hirata, “Solution of three-dimensional reference interaction
site model and hypernetted chain equations for simple point charge water by modified method
of direct inversion in iterative subspace,” J. Comp. Chem. 20, 928 (1999). 19

[6] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, New York, NY, USA,
2006). 19

[7] H. C. Andersen, “Molecular dynamics at constant pressure and/or temperature,” J. Chem.
Phys. 72, 2384 (1980). 21

[8] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola, and J. R. Haak,
“Molecular-Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81, 3684 (1984).
22,23

[9] S. C. Harvey, R. K. Z. Tan, and T. E. Cheatham, “The flying ice cube: Velocity rescaling
in molecular dynamics leads to violation of energy equipartition,” J. Comp. Chem. 19, 726
(1998). 22

[10] G.J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, “Explicit reversible integrators
for extended systems dynamics,” Molecular Phys. 87, 1117 (1996). 22

[11] B. Aradi, A. M. N. Niklasson, and T. Frauenheim, “Extended Lagrangian Density Functional
Tight-Binding Molecular Dynamics for Molecules and Solids,” J. of Chem. Theory Comput.
11, 3357 (2015). 24, 67

[12] M. Ceriotti, J. More, and D. E. Manolopoulos, “i-PI: A Python interface for ab initio path
integral molecular dynamics simulations,” Computer Phys. Comm. 185, 1019 (2014). 26

[13] A.Dominguez, T. A. Niehaus, and T. Frauenheim, “Accurate Hydrogen Bond Energies within
the Density Functional Tight Binding Method,” The Journal of Physical Chemistry A 119,
3535 (2015). 32, 66

161

162 BIBLIOGRAPHY

[14] D. D. Johnson, “Modified Broyden’s method for accelerating convergence in self consistent
calculations,” Phys. Rev. B 38, 12807 (2003). 34

[15] V. Eyert, “A Comparative Study on Methods for Convergence Acceleration of Iterative Vector
Sequences,” J. Comp. Phys. 124, 271 (1996). 34, 35

[16] M. J. Han, T. Ozaki, and J. Yu, “O(N) LDA+U electronic structure calculation method based
on the nonorthogonal pseudoatomic orbital basis,” Phys. Rev. B 73, 045110 (2006). 39

[17] E. Anderson et al., LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1999). 40

[18] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid GPU
accelerated manycore systems,” Parallel Computing 36, 232 (2010). 40

[19] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense Linear Algebra Solvers for Multicore
with GPU Accelerators,” In Proc. of the IEEE IPDPS’10, pp. 1-8 (IEEE Computer Society,
Atlanta, GA, 2010), DOI: 10.1109/IPDPSW.2010.5470941. 40

[20] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, “Accel-
erating Numerical Dense Linear Algebra Calculations with GPUs,” Numerical Computations
with GPUs 1 (2014). 40

[21] V. W.-z. Yu et al., “ELSI: A unified software interface for Kohn-Sham electronic structure
solvers,” Computer Phys. Comm. 222, 267 (2018). 40

[22] M. Methfessel and A. T. Paxton, “High-precision sampling for Brillouin-zone integration in
metals,” Phys. Rev. B 40, 3616 (1989). 43

[23] H.J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B
13, 5188 (1976). 45

[24] H. J. Monkhorst and J. D. Pack, “"Special points for Brillouin-zone integrations"—a reply,”
Phys. Rev. B 16, 1748 (1977). 46

[25] B. Hourahine, S. Sanna, B. Aradi, C. Kohler, T. Niehaus, and T. Frauenheim, “Self-Interaction
and Strong Correlation in DFTB,” J. Phys. Chem. A 111, 5671 (2007). 47, 159

[26] A. G. Petukhov, 1. I. Mazin, L. Chioncel, and A. I. Lichtenstein, “Correlated metals and the
LDA+U method,” Phys. Rev. B 67, 153106 (2003). 47

[27] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, “UFF, a full
periodic table force field for molecular mechanics and molecular dynamics simulations,” J.
Am. Chem. Soc. 114, 10024 (1992). 49, 50

[28] M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, “Hydrogen bonding and stack-
ing interactions of nucleic acid base pairs: a density-functional-theory based treatment,” J.
Chem. Phys. 114, 5149 (2001). 50, 51, 52, 147, 159

[29] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-
Pu,” J. Chem. Phys. 132, 154104 (2010). 50, 52, 57

[30] S. Grimme, S. Ehrlich, and L. Goerigk, “Effect of the Damping Function in Dispersion Cor-
rected Density Functional Theory,” J. Chem. Phys. 32, 1456 (2011). 50, 52

BIBLIOGRAPHY 163

[31] E. Caldeweyher, C. Bannwarth, and S. Grimme, “Extension of the D3 dispersion coefficient
model,” J. Chem. Phys. 147, 034112 (2017). 50

[32] E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S.
Grimme, “A generally applicable atomic-charge dependent London dispersion correction,”
J. Chem. Phys. 150, 154122 (2019). 50, 54, 55

[33] L. Zhechkov, T. Heine, S. Patchkovskii, G. Seifert, and H. A. Duarte, “An Efficient a Posteriori
Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding,” J. of Chem.
Theory Comput. 1, 841 (2005). 50

[34] J. Rez4g, “Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in
DFTB3,” J. of Chem. Theory Comput. 13, 4804 (2017). 54, 63, 64, 65

[35] J. Reza¢ and P. Hobza, “Advanced Corrections of Hydrogen Bonding and Dispersion for
Semiempirical Quantum Mechanical Methods,” J. of Chem. Theory Comput. 8, 141 (2012).
54, 63, 65

[36] A. K. Rappé and W. A. Goddard III, “Charge Equilibration for Molecular Dynamics Simula-
tion,” J. Chem. Phys. 95, 3358 (1991). 55

[37] M. Gaus, Q. Cui, and M. Elstner, “DFTB3: Extension of the Self-Consistent-Charge Density-
Functional Tight-Binding Method (SCC-DFTB),” J. of Chem. Theory Comput. 7, 931 (2011).
57, 63

[38] Y. Yang, H. Yu, D. York, Q. Cui, and M. Elstner, “Extension of the Self-Consistent-Charge
Density-Functional Tight-Binding Method: Third-Order Expansion of the Density Functional

Theory Total Energy and Introduction of a Modified Effective Coulomb Interaction,” J. Phys.
Chem. A 111, 10861 (2007). 57, 63, 159

[39] A.V.Onufriev and D. A. Case, “Generalized Born Implicit Solvent Models for Biomolecules,”
Annu. Rev. Biophys. 48, 275 (2019). 58

[40] A. Onufriev, D. Bashford, and D. A. Case, “Exploring protein native states and large-scale
conformational changes with a modified generalized born model,” Proteins 55, 383 (2004). 59

[41] A.V.Marenich, S. V. Jerome, C. J. Cramer, and D. G. Truhlar, “Charge Model 5: An Extension
of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in
Gaseous and Condensed Phases,” J. of Chem. Theory Comput. 8, 527 (2012). 61, 70

[42] M. Mantina, R. Valero, C. Cramer, and D. Truhlar, CRC Handbook of Chemistry and Physics
(CRC Press Boca Raton, FL, 2010). 61

[43] W. Im, M. S. Lee, and C. L. Brooks III, “Generalized Born model with a simple smoothing
function,” J. Comp. Chem. 24, 1691 (2003). 62

[44] V. 1. Lebedev and D. N. Laikov, “A quadrature formula for the sphere of the 131st algebraic
order of accuracy,” Doklady Mathematics 59, 477 (1999). 62

[45] M. Kubillus, T. Kubar, M. Gaus, J. Rez4¢, and M. Elstner, “Parameterization of the DFTB3
Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems,” J. of Chem. Theory
Comput. 11, 332 (2014). 63

[46] T. A. Niehaus and F. Della Sala, “Range separated functionalsin the density functional based
tight-binding method: Formalism,” Phys. Status Solidi B 249, 237 (2012). 65

164 BIBLIOGRAPHY

[47] V. Lutsker, B. Aradi, and T. A. Niehaus, “Implementation and benchmark of a long-range
corrected functional in the densityfunctional based tight-binding method,” J. Chem. Phys. 143,
184107 (2015). 65

[48] A. D. Garcia, PhD. thesis, Universitit Bremen, 2014, http://elib.suub.uni-
bremen.de/edocs/00103868-1.pdf. 66, 87, 153

[49] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and
G. Seifert, “Self-consistent-charge density-functional tight-binding method for simulations of
complex materials properties,” Phys. Rev. B 58, 7260 (1998). 67, 159

[50] J. Pipek and P. G. Mezey, “A fast intrinsic localization procedure applicable for ab initio and
semiempirical linear combination of atomic orbital wave functions,” J. Chem. Phys. 90, 4916
(1989). 71

[51] T. A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, and T. Frauenheim,
“Tight-binding approach to time-dependent density-functional response theory,” Phys. Rev. B
63, 085108 (2001). 73, 159

[52] R.B. Lehoucq, D. C. Sorensen, and C. Yang, “ARPACK Users Guide: Solution of Large Scale
Eigenvalue Problems by Implicitly Restarted Arnoldi Methods.,”, 1997. 73, 86

[53] https://github.com/opencollab/arpack-ng. 73

[54] D. Heringer, T. A. Niehaus, M. Wanko, and T. Frauenheim, “Analytical excited state forces
for the time-dependent density-functional tight-binding method.,” J. Comp. Chem. 28, 2589
(2007). 74

[55] Y. Yang, A. Dominguez, D. Zhang, V. Lutsker, T. A. Niehaus, T. Frauenheim, and W. Yang.,
“Charge transfer excitations from particle-particle random phase approximation - Opportuni-
ties and challenges arising from two-electron deficient systems.,” J. Chem. Phys. 146, 124104
(2017). 75

[56] I.S. Lee, M. Filatov, and S. K. Min, “Formulation and Implementation of the Spin-Restricted
Ensemble-Referenced Kohn-Sham Method in the Context of the Density Functional Tight
Binding Approach,” J. of Chem. Theory Comput. 15, 3021 (2019). 76, 77, 159

[57] S. Lany and A. Zunger, “Accurate prediction of defect properties in density functional super-
cell calculations,” Modelling and Simulation in Materials Science and Engineering 17, 084002
(2009). 82

[58] B. Aradi, B. Hourahine, and T. Frauenheim, “DFTB+, a Sparse Matrix-Based Implementation
of the DFTB Method,” J. Phys. Chem. A 111, 5678 (2007), dftbplus.org. 83

[59] A. Di Carlo, A. Pecchia, L. Latessa, T. Frauenheim, and G. Seifert, in Introducing Molecular
Electronics, G. Cuniberti, K. Richter, and G. Fagas, eds., (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005), pp. 153-184. 100

[60] A. Pecchia and A. Di Carlo, “Atomistic theory of transport in organic and inorganic nanos-
tructures,” Rep. Prog. Phys. 67, 1497 (2004). 100

[61] C. Kohler, Ph.D. thesis, Department Physik der Fakultit fur Naturwissenschaften an der Uni-
versitit Paderborn, 2004, http://ubdata.uni-paderborn.de/ediss/06/2004/koehler/. 145

[62] K. J. Miller, “Additivity methods in molecular polarizability,” J. Am. Chem. Soc. 112, 8533
(1990). 147

BIBLIOGRAPHY 165

[63] Y. K. Kang and M. S. Jhon, “Additivity of atomic static polarizabilities and dispersion coeffi-
cients,” Theoretica Chimica Acta 61, 41 (1982). 147

[64] D. Porezag, T. Frauenheim, T. Kohler, G. Seifert, and R. Kaschner, “Construction of tight-
binding-like potentials on the basis of density-functional theory: Application to carbon,” Phys.
Rev. B 51, 12947 (1995). 159

[65] G. Seifert, D. Porezag, and T. Frauenheim, “Calculations of molecules, clusters, and solids
with a simplified LCAO-DFT-LDA scheme,” Int. J. Quant. Chem. 58, 185 (1996). 159

[66] C. Kohler, G. Seifert, and T. Frauenheim, “Density-Functional based calculations for Fe(n),
(n<32),” Chem. Phys. 309, 23 (2005). 159

[67] C.Kohler, T. Frauenheim, B. Hourahine, G. Seifert, and M. Sternberg, “Treatment of Collinear
and Noncollinear Electron Spin within an Approximate Density Functional Based Method,” J.
Phys. Chem. A 111, 5622 (2007). 159

[68] Q. Cui, M. Elstner, T. Frauenheim, E. Kaxiras, and M. Karplus, “Combined self-consistent
charge density functional tight-binding (SCC-DFTB) and CHARMM,” J. Phys. Chem. B 105,
569 (2001). 159

[69] W. Han, M. Elstner, K. J. Jalkanen, T. Frauenheim, and S. Suhai, “Hybrid
SCC-DFTB/Molecular Mechanical Studies of H-Bonded Systems and of N-acetyl-(L-Ala),-
N’-Methylamide Helices in Water Solution,” Int. J. Quant. Chem. 78, 459 (2000). 159

Index

ContactPLs, 85
Dephasing, 29
Verbosity, 63

al, 55

a2, 55

AdaptFillingTemp, 21, 22
AllAtomCharges, 32
AllAtomSpins, 37, 38
Alpha, 18

alpha, 55

Analysis, 12, 102
Analysis{}, 102
AngularMomentum, 115
Animate, 106

AppendFile, 67
AppendGeometries, 16, 18, 19
ARPACK.DAT, 78

Atom list, 16
AtomCharge, 32
AtomDensityCutoff, 94
AtomDensityTolerance, 94
AtomicNumber, 115
AtomRange, 85, 86
AtomResolvedEnergies, 64
Atoms, 19, 26, 37, 38, 65, 105, 107, 118
AtomSpin, 37, 38

band structure calculation, 47
band.out, 73

Barostat, 20

Basis, 110

Blacs, 70

Boundary Conditions, 95
BoundaryRegion, 94

Box, 113

BoxExtension, 94
Brillouin-zone sampling, 45
BuettikerProbes, 100
BuettikerProbes{}, 100
BufferLength, 96
BuildBulkPotential, 94, 96

CacheCharges, 68
CalculateForces, 64
Casida, 67
ChainLength, 22
Charge, 29
ChargeDensity, 110
ChargeModel, 55
charges.bin, 76
ChargeScale, 55
ChargeSteepness, 55
Chi, 56

Choleskii, 42

Circle, 96

COEFE.DAT, 78
Coefficients, 115
Constraints, 16, 18, 19
Contact, 85

Contact{}, 86
ContactHamiltonian, 88
Contactld, 87
ContactSeparation, 87
ContactVector, 118
ContourPoints, 90
ConvergentForcesOnly, 16, 18-20, 29
CoordsAndCharges, 48
Coupling, 23
CouplingStrength, 22
CovalentRadius, 52
CustomisedHubbards, 29
CustomisedOccupations, 29, 33
Cutoff, 54, 56, 115
CutoffCheck, 94
CutoffCN, 54
CutoffCount, 55
Cutofflnter, 55
CutoffReduction, 60
CutoffThree, 55
Cylindrical, 98

Delta, 19, 62, 90
Dense, 66
Dephasing, 99

166

INDEX

detailed.out, 73
DetailedXML, 110
Device, 85

Device{}, 85
DFTB+U, 47

DFTB3, 57
DiagonalRescaling, 35
Differentiation, 29
Direction, 49, 50
Directions, 67
DirectRead{}, 48
Dispersion, 29
DisplayModes, 105
Driver, 12
DynMixingParameters, 35

eigenvec.bin, 76
eigenvec.out, 76
EigenvecBin, 110
EigenvectorsAsText, 64
ElectricField, 29
Electrostatic Gates, 98
ElectrostaticPotential, 64
Electrostatics, 83
ELPA, 41
EnclosedPoles, 90
EnergyRange, 102
EnergyStep, 102
EnergyWindow, 68
ESP.dat, 77
EwaldParameter, 29, 56
EwaldTolerance, 29, 56
EXC.DAT, 79
ExcitedState, 12, 60
ExcitedStateForces, 68
Exponents, 115
External, 48, 49

FermiCutoff, 90, 93
FermilLevel, 86, 90

File, 26
FillBoxWithAtoms, 110
Filling, 29
FirstLayerAtoms, 85, 90
FixAngles, 16, 18, 19
FixedFermilLevel, 43
FixLengths, 16
FoldAtomsToUnitCell, 110
ForceEvaluation, 29
Frequency, 49, 50

gl}. 22
Gam, 56

Gate, 94, 98
GateDistance, 98
GatelLenth 1,98
GatelLenth t, 98
GatePotential, 98
GateRadius, 98
GaussianBlurWidth, 48
Generations, 18, 35, 36
Geometry, 12, 105, 117
Global, 96
GreensFunction, 90
GreensFunction{}, 83
Grid, 67

GridPoints, 67
GroundState, 110
Groups, 70

H5Scaling, 58
HalogenXCorr, 29, 57
Hamiltonian, 12
HamiltonianMatrix, 99
hamreal.dat, 75
hamsgqr.dat, 75

Hard CutOff, 34
HCorrection, 29
Hessian, 16, 19, 106
Hessian, 105
HHRepulsion, 54

Host, 26
HubbardDerivs, 29
HybridDependentPol{}, 51
HybridPolarisations, 52

i-PI1{}, 26
Id, 86, 118

IgnoreUnprocessedNodes, 69, 116

ImagComponent, 110
IndependentKFilling, 43
InitialCharges, 29
InitialSpins, 37, 38

Initial Temperature, 21
InitMixingParameter, 35, 36
IntegrationSteps, 24
IntegratorSteps, 22
InverseJacobiWeight, 35
Isotropic, 16, 18, 19, 23

Ken, 56
KeepStationary, 20

167

168

KPointsAndWeights, 29

Label, 65

LatticeOpt, 16, 18, 19
LatticeVectors, 12
LBFGS{}, 19
LevelSpacing, 86

List of atoms, 16
LocalCurrents, 90
Localise, 64
localOrbs.bin, 66
localOrbs.out, 66
LowerCaseTypeName, 45
LowestEnergy, 90

Mass, 26, 106

Masses, 20, 105
MassPerAtom, 26, 107
MaxAngularMomentum, 29
MaxAtomStep, 16, 18
MaxForceComponent, 16, 18, 19
MaximalWeight, 35
Maxlterations, 66
MaxLatticeStep, 16, 18, 19
MaxParallelNodes, 94, 102
MaxPoissonlterations, 94
MaxSCClterations, 29
MaxScclterations, 24, 47
MaxSKCutoff, 119
MaxSteps, 16, 18, 19, 26
md.out, 77
MDRestartFrequency, 20, 77
Memory, 19
MinEdgelLength, 113
MinimalGrid, 94
MinimalWeight, 35
MinimiseMemoryUsage, 63
MinScclterations, 24

Mixer, 29

MixingParameter, 35
Monkhorst-Pack scheme, 46
MovedAtoms, 16, 18-20
MullikenAnalysis, 64
muPoints, 42

ninterationsELPA, 42
No, 34

NPH ensemble, 23
NPT ensemble, 23
NrOfCachedGrids, 110
NrOfExcitations, 68

INDEX

NrOfPoints, 110
NTPoly, 41
NumericalNorm, 94
NumStates, 99

NVE ensemble, 21
NVT ensemble, 21, 22

Occupation, 115
OldSKInterpolation, 29, 34
OMM, 41
OnSiteCorrection, 29
Options, 12, 110

Orbital, 115
OrbitalPotential, 29
OrbitalResolved, 65

Order, 22, 44

Origin, 67, 113
Orthonormal, 29, 99
OrthonormalDevice, 29, 99
OscillatorWindow, 68
OutputFile, 67
OutputPrefix, 16, 18-20
OverlapMatrix, 99
overreal.dat, 75
OverrideBulkBC, 94
OverrideDefaultBC, 94
oversqr.dat, 75

Parallel, 12
Parallelisations, 101
ParserOptions, 12, 110
ParserVersion, 69, 122
Periodic, 12

PEXSI, 41

Phase, 49
PipekMezey, 65
Planar, 98
PlotModes, 106
PlottedKPoints, 110
PlottedLevels, 110
PlottedRegion, 110
PlottedSpins, 110
PLShiftTolerance, 86
Plumed, 20
PointCharges, 48
Points, 67

Poisson{}, 83
PoissonAccuracy, 94
PoissonBox, 94
PoissonThickness, 94

INDEX

Poles, 42
PolynomialRepulsive, 29
Port, 26

Potential, 86, 96
Prefix, 26, 45

Pressure, 16, 18, 19, 23
PreSteps, 24
ProcsPerPole, 42
ProjectStates, 64, 65
Protocol, 26
PurificationMethod, 43

Rad, 56

RandomSeed, 63
RangeSeparated, 29, 60
ReadChargesAsText, 63
ReadlInitialCharges, 29
ReadOldBulkPotential, 94
ReadSelfEnergy, 86
ReadSeparatedSGF, 86
ReadSurfaceGF, 86
ReadSurfaceGFs, 90, 91
RealAxisPoints, 90, 91, 93
Real AxisStep, 90, 91, 93
RealComponent, 110
RecomputeAfterDensity, 94
Region, 102
RelaxTotalSpin, 37
RemoveRotation, 105
RemoveTranslation, 105
RepeatBox, 110
ReselectIndividually, 21
ReselectProbability, 21
Resolution, 114

Restart, 22
RestartFrequency, 63
results.tag, 74

RScaling, 58

s10, 55

sb, 55

s8, 55

s9, 55
SavePotential, 94
SaveSurfaceGFs, 90, 91
Scale, 25

SCC, 20, 29
SCCTolerance, 29
SccTolerance, 24
Screening, 60

sec:Damp X-H, 58
sec:DFTB3-D3HS5, 58
SelectedShells, 30
Separator, 45
ShellResolved, 65
ShellResolvedSCC, 29
ShellResolvedSpin, 29, 39
ShiftGrid, 110
ShowFoldedCoords, 63
SkipChargeTest, 63
SKMaxDistance, 34

SlaterKosterFiles, 29, 105, 118

Softening, 67

Solver, 29, 83
Spacing, 67

Sparse, 41-43
SparseTolerances, 66
SpecifiedPLs, 118
SpectralRadius, 42
SpinConstants, 29, 68
SpinDegeneracy, 99
SpinOrbit, 29
SpinPerAtom, 37, 38
SpinPolarisation, 29
SPX.DAT, 79
Square, 96

state resolved Mulliken population, 76

StateOflnterest, 68
Steps, 20

StepSize, 16
StopAfterParsing, 69, 116
Strength, 49, 50

Suffix, 45
SymbolicFactorProcs, 42
Symmetry, 68

Task, 85, 87

Task = ContactHamiltonian{}, 87

Task = UploadContacts, 89

Task = UploadContacts{}, 89

TDP.DAT, 80
Temperature, 21, 22, 43, 86

TemperatureProfile{}, 20-22

TerminalCurrents, 102
TEST_ARPACK.DAT, 80
TestArnoldi, 68
Thermostat, 20
ThirdOrder, 29
ThirdOrderFull, 29
Threebody, 54

169

170

Threshold, 42, 43, 60
Timescale, 22, 23
TimeStep, 20, 50
TimingVerbosity, 63
Tolerance, 42, 43, 66
TotalAtomicDensity, 110
TotalChargeDensity, 110
TotalChargeDifference, 110
TotalSpinPolarisation, 110
TotalStateCoeffs, 68
TRA.DAT, 80
TransientSteps, 25
TransmissionAndDos{}, 102
Transport, 91, 117
Transport{}, 83, 85
TransportOnly, 83
TruncateSKRange, 29, 118
Truncation, 43
TypeNames, 12
TypesAndCoordinates, 12

Unformatted, 86
UnpairedElectrons, 37
UseFromStart, 36
UseOmpThreads, 70

v{}, 22

Velocities, 20

Verbose, 110

Verbosity, 26, 90, 94, 102
VibronicElastic, 100
VibronicElastic{}, 101

WeightFactor, 35
WeightingFactor, 55
WideBand, 86
WriteAutotestTag, 63
WriteBandOut, 64
WriteBinaryContact, 87
WriteChargesAsText, 63
WriteCoefficients, 68
WriteDetailedOut, 63
WriteDetailedXML, 63
WriteEigenvectors, 64, 68
WriteHS, 63
WriteHSDInput, 69, 105
WriteLDOS, 102
WriteMulliken, 68
WriteRealHS, 63
WriteResultsTag, 63
WriteSelfEnergy, 86

INDEX

WriteSeparatedSGF, 86
WriteSPTransitions, 68
WriteStatusArnoldi, 68
WriteSurfaceGF, 86
WriteTransitionDipole, 68
WriteTransitions, 68
WriteTunn, 102
WriteXMLInput, 69, 105
WriteXplusY, 68
WScaling, 58

x{}, 22
XCH.DAT, 80
Xlbomd, 20
XlbomdFast, 20
XMakeMol, 106
XplusY.DAT, 80
XREST.DAT, 81

Yes, 34

	Preface
	1 Introduction
	2 Input for DFTB+XT
	2.1 Main input
	2.2 Geometry
	2.2.1 Explicit geometry specification
	2.2.2 GenFormat{}
	2.2.3 xyzFormat{}
	2.2.4 VaspFormat{}
	2.2.5 NoGeometry{}

	2.3 Driver
	2.3.1 SteepestDescent{}
	2.3.2 ConjugateGradient{}
	2.3.3 gDIIS{}
	2.3.4 LBFGS{}
	2.3.5 SecondDerivatives{}
	2.3.6 VelocityVerlet{}
	2.3.7 Socket{}

	2.4 Hamiltonian
	2.4.1 Mixer
	2.4.2 SpinPolarisation
	2.4.3 SpinOrbit
	2.4.4 Solver
	2.4.5 Filling
	2.4.6 SlaterKosterFiles
	2.4.7 KPointsAndWeights
	2.4.8 OrbitalPotential
	2.4.9 ElectricField
	2.4.10 Dispersion
	2.4.11 DFTB3
	2.4.12 Implicit Solvation Model
	2.4.13 Halogen corrections
	2.4.14 Hydrogen corrections
	2.4.15 RangeSeparated
	2.4.16 On site corrections
	2.4.17 Differentiation
	2.4.18 ForceEvaluation

	2.5 Options
	2.6 Analysis
	2.7 ExcitedState
	2.7.1 Casida
	2.7.2 PP-RPA

	2.8 REKS
	2.8.1 SSR22

	2.9 ParserOptions
	2.10 Parallel

	3 Output of DFTB+XT
	3.1 band.out
	3.2 detailed.out
	3.3 results.tag
	3.4 hamsqrN.dat, oversqr.dat
	3.5 hamrealN.dat, overreal.dat
	3.6 eigenvec.out, eigenvec.bin
	3.7 charges.bin / charges.dat
	3.8 md.out
	3.9 Electrostatic potential data
	3.10 Excited state results files
	3.10.1 ARPACK.DAT
	3.10.2 COEF.DAT
	3.10.3 EXC.DAT
	3.10.4 SPX.DAT
	3.10.5 TDP.DAT
	3.10.6 TRA.DAT
	3.10.7 TEST_ARPACK.DAT
	3.10.8 XCH.DAT
	3.10.9 XplusY.DAT
	3.10.10 XREST.DAT

	3.11 ppRPA_ener.DAT
	3.12 REKS results files
	3.12.1 tdp.dat
	3.12.2 relaxed_charge.dat

	4 Transport calculations
	4.1 Definition of the geometry
	4.1.1 Rules to build a valid input geometry

	4.2 Transport{}
	4.2.1 Device{}
	4.2.2 Contact{}
	4.2.3 Task = ContactHamiltonian{}
	4.2.4 Task = UploadContacts{}

	4.3 GreensFunction
	4.4 Solver = TransportOnly
	4.5 Contour integration
	4.6 Spin-polarised transport
	4.7 Poisson solver
	4.7.1 Boundary Conditions
	4.7.2 Electrostatic Gates

	4.8 Model Hamiltonians
	4.9 Quasi-elastic dephasing
	4.9.1 BuettikerProbes{}
	4.9.2 VibronicElastic{}

	4.10 Application to STM spectroscopy
	4.11 Parallelisations
	4.12 Analysis{}
	4.13 TransmissionAndDos{}
	4.14 Setting electronic temperature
	4.15 Troubleshooting transport
	4.16 Transport Tools

	5 modes
	5.1 Input for modes
	5.1.1 Hessian{}
	5.1.2 DisplayModes{}

	6 Waveplot
	6.1 Input for Waveplot
	6.1.1 Options
	6.1.2 Basis
	6.1.3 ParserOptions

	7 setupgeom
	7.1 Input for setupgeom
	7.1.1 Transport{}
	7.1.2 Code output

	8 DFTB+ API
	8.1 Building the library
	8.2 General guidelines

	A The HSD format
	A.1 Scalars and list of scalars
	A.2 Methods and property lists
	A.3 Modifiers
	A.4 File inclusion
	A.5 Processing
	A.6 Extended format

	B Unit modifiers
	C Description of the gen format
	D Atomic spin constants
	E Slater-Kirkwood dispersion constants
	F DftD3 dispersion constants
	G DftD4 dispersion constants
	H Atomic onsite constants
	I Hartree Hubbard constants for pp-RPA calculations
	J Description of restart files
	J.0.1 charges.bin / charges.dat
	J.0.2 contact.bin / contact.dat

	K Publications to cite
	Bibliography
	Index

