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Overveiw and recipes
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CHAPTER 1

Transport calculations (introduction)

In this chapter one can find a brief overview of the DFTB+XT features for electronic structure
and quantum transport calculations. The detailed description of input and output is given in
the USER MANUAL. The step-by-step calculation of the electronic structure and basic transport
properties can be done using the Tutorial on 2D Carbon Materials (Part II).

The following blocks must present in the input file for transport calculations: Geometry, Transport,
Hamiltonian, Analysis. We discuss below the main ideas of the input and also some additional
python scripts for different types of calculations. This overview is an introduction and does not
describe all input keywords, which are listed and explained in the USER MANUAL.

1.1 Specifying the geometry

1.1.1 Partitioning and atom numbering for a system with 2 electrodes

In the simplest case, transport calculations can be performed on an atomistic structure comprising
two semi-infinite electrodes. The electrodes are usually periodic systems being terminated on
one end by the central region (extended molecule, device). In order to carry out a transport
calculation with DFTB+XT, the system must be carefully partitioned by the user and the structure
must contain (Fig. 1.1):

• The extended molecule (central region, device);

• Two Principal Layers (see below) of the first contact;

• Two Principal Layers of the second contact.

Fig. 1.1: Subdivision of a 2-terminal structure into principal layers (PL), two for each contact
and an arbitrary number within the extended molecule.

3



TraNaS OpenSuite Guide, version 1.03 (release) January 18, 2020

The extended molecule contains the atomistic device itself plus those parts of the attached
electrodes, which are directly influenced by the presence of the device. Each electrode, on the
other hand, contains those parts of the physical electrode, which are far enough from the device
and are not affected by it. Examples below will better clarify this point.

The most important concept to bear in mind is that of principal layers (PLs). These are defined
as contiguous groups of atoms that have interaction only with atoms of adjacent PLs. In practice
these layers must contain a sufficient number of atoms in order to ensure that Hamiltonian and
overlap interactions with second neighbouring PLs vanish or can be considered negligible. The
subdivision into PLs is essential for the definition of the two contacts and becomes useful in the
computation of all Green functions that exploit a recursive algorithm [4].

As shown in the figure 1.1, the extended molecule can contain an arbitrary number of PLs (> 1),
but the layers must follow a sequential ordering.

The ordering of the PLs follows directly from the ordering of the atoms in the
DFTB+ structure.1

Typically it is convenient to create the structure and then sort the atom along the transport
coordinate, before partitioning the system. In other cases, when nanowires are constructed it is
convenient to repeat a PL unit for the desired length of the extended molecule.

The (perfect) contacts must be defined by two principal layers. Differently from the layers of the
extended molecule, those defining the contacts must follow additional rules:

• The two principal layers of a given contact must be identical;

• They must be rigidly shifted images of each other;

• The first PL must be the closest to the device region.

In order to ensure the above prescriptions, the numbering of the atoms must follow a precise
ordering.

The atoms of the central region must be specified first, before the atoms of the contacts (see
example below in Fig. 1.2). The atoms of the contacts follow the central region. The atoms of
each contact must be specified continously. (You specify either all atoms of the left contact first,
and then those of the right one, or vice versa.)

The numbering inside the first principal layer defining each contact is arbitrary, but the same
numbering must be applied to the second PL. Thus, the indices of the corresponding atoms in
the two contact PLs must differ by the same value, and the coordinates must differ by the same
translation vector. These prescriptions are checked by the code and an error message is issued if
the two PLs do not conform. It is important to remember to place the first PL closer to the
device, i.e. the principal layer closer to the device must contain the atoms with lower indices.

1.1.2 Supercell structures

The code can compute transport on structures that have a periodicity in the transverse directions
(with respect to transport). In this case the structure must be defined as a supercell and the
rules listed above apply to each cell. The real-space Poisson solver of DFTB+ limits the supercell
lattices to orthorombic types (all angles between supercell vectors must be 90 degrees). In fact
the supercell is always defined 3-dimensional, and the user should ensure that the dummy lattice
vector along the transport direction is long enough to avoid superpositions between images.

1Note, however, the case of model calculations without geometry Sec. 1.2.4.
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Fig. 1.2: Example for numbering the atoms. Atoms of the device have the lowest indices,
followed by the atoms of each contact, respectively. The two principal layers of both contacts are
shifted images of each other.

The current version of DFTB+ only supports one supercell definition for the entire system,
including central region and contacts. It may be redundant to observe that in this case the two
contacts must be of the same periodicity.

1.1.3 Partitioning the system with N electrodes

DFTB+XT allows also multi-terminal calculations. The rules for the atomic sequence are the
same: first must be the device atoms, then the electrodes represented by two PLs each, and the
numbers of the PL close to the device should be smaller than the numbers of the second PL.

In the case when the device region consists of many PLs, it is important that every electrode is
connected to only one of PLs, but any number can be connected to one PL. The trivial example
is the the case with only one PL in the central region and two electrodes, in this case both
electrodes are connected to the same PL. This is illustrated in Fig. 1.3.

Fig. 1.3: Subdivision of a N-terminal structure into principal layers (PL), two for each contact
and an arbitrary number within the extended molecule.

1.1.4 Geometry input block

The atomic structure is defined in the Geometry block (see the USER MANUAL for the description).
The example of geometry definition is given in the tutorial, see from Sec. 3.1.1.

1.1.5 Transport input block

The geometry must be additionally defined in the input Transport block as specified in the
following example:
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Transport {
Device {

AtomRange = 1 8
}
Contact {

Id = "source"
AtomRange = 9 24
FermiLevel [eV] = -8.4123
Potential = 0.0

}
Contact {

Id = "drain"
AtomRange = 25 40
FermiLevel [eV] = -8.4123
Potential = 1.0

}
Task = UploadContacts

}

The Fermi level should be precalculated in the electrodes as discussed in Sec. 1.3 and in the
tutorial in more detail. There are also many other parameters of the electrodes.

1.2 Specifying the Hamiltonian

1.2.1 Hamiltonian input block

The Hamiltonian block for Non-SCC DFTB calculations looks like

Hamiltonian = DFTB {
SCC = No
MaxAngularMomentum = {

C = "p"
H = "s"

}
SlaterKosterFiles = Type2FileNames {

Prefix = "../../../sk/"
Separator = "-"
Suffix = ".skf"

}
Solver = TransportOnly{}

}

Note that transport calculation can be started immediately in this case, but precalculations of
electrodes may be done to determine the Fermi levels.

In the case of SCC DFTB calculation, however, the self-consistent density of electrons should be
calculated at zero or finite voltage before the calculation of the transmission or density of states.
The Hamiltonian block should include new options, the main are

Hamiltonian = DFTB {
SCC = Yes
SCCTolerance = 1e-6
ReadInitialCharges = No
Electrostatics = Poisson {
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Poissonbox [Angstrom] = 40.0 30.0 30.0
MinimalGrid [Angstrom] = 0.5 0.5 0.5
SavePotential = Yes

}
Solver = GreensFunction{}
Mixer = Broyden{}

MixingParameter = 0.02
}
...

}

Note change of the Solver method and new Electrostatics subblock, required for a self-consistent
calculation of electron densities and electric field.

1.2.2 Green function solver

If you calculate electron transport properties using the Green function formalism, you need to
determine the electron density in your system with respect to certain electrostatic boundary
conditions for your system. For that, you must use the GreensFunction{} as eigensolver, which is
capable to deliver the appropriate density. Please note, that this technique does not deliver any
eigenvalues, it does not solve the eigenproblem (no eigenvectors are computed).

You can instruct the code to use the Green function solver by setting Solver in the block
Hamiltonian = DFTB{} to GreensFunction{}:

Hamiltonian = DFTB {
:
Solver = GreensFunction{}
:

}

Let us discuss the most important parameters to be set in GreensFunction{}:

Solver = GreensFunction {
FirstLayerAtoms = 1 61 121 181 241 301 361 421 481 541
Delta [eV] = 1e-4
ContourPoints = 20 20
LowestEnergy [eV] = -60.0
EnclosedPoles = 0

}

FirstLayerAtoms is used to specify the PLs in the central region in the same way as described in
Device subblock. Can be specified only if no Transport block exists. As the name of the keyword
suggests the layers are defined by specifying the first atom of each layer. In this case 10 PLs have
been defined. Note that the contacts are not included here, as they are specified in the Transport
block.

Delta defines a small positive imaginary number used in the computation of the GFs.

ContourPoints is used to specify the number of quadrature points in the contour integration (see
also the USER MANUAL for a description of the complex contour).

LowestEnergy is the initial energy from which the integration starts. It should be low enough to
ensure that all the electronic states are correctly included in the integration. The default is -2.0
Hartree.
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EnclosedPoles is set to 0 when T=0. For T>0 few poles (usually 3) needs to be included within
the contour.

1.2.3 Poisson solver options

For the transport calculation the GammaFunctional solver (default) is substituted with the Poisson
solver. The Poisson{} method is used to define the size of the Poisson domain. The Poisson
equation is solved via a real-space multigrid solver that employs finite-differences for discretization
on a finite box with a regular grid (structured mesh). The charge density on the right-hand-side
is constructed exactly as in standard gamma-functional of DFTB, namely expanding the charge
density into spherical s-like atomic densities weighted by atomic Mulliken charges.

Electrostatics = Poisson {
Poissonbox [Angstrom] = 30.0 30.0 30.0
MinimalGrid [Angstrom] = 0.4 0.4 0.4
AtomDensityTolerance = 1e-6
BuildBulkPotential = Yes
SavePotential = Yes
PoissonAccuracy = 1e-7

}

The method Poisson{} is used to define the size of the Poisson domain. The Poisson equation
is solved via a real-space multigrid solver that employs finite-differences for discretization on a
finite box with a regular grid (structured mesh). The charge density on the right-hand-side is
constructed exactly as in standard gamma-functional of DFTB, namely expanding the charge
density into spherical s-like atomic densities weighted by atomic Mulliken charges.

The equation is solved by imposing the following boundary conditions (BC):

1. Dirichelet or mixed BC on the faces containing contacts.

2. Neumann BC on the remaining faces.

In the example above a box of 30x30 Angstrom in the 𝑥- and 𝑦- directions (orthogonal to
the transport direction 𝑧) have been chosen. This size should be sufficient in the current case
for obtaining a converged result. A box too small may introduce artificial size effects. The
specification of the box length along the 𝑧-direction is a dummy number ignored by the code as
the box-length in this direction is constrained by the position of the contacts and is internally
adjusted.

The meaning of the additional options are the following:

MinimalGrid = 0.4 0.4 0.4 is used to specify that the grid must be spaced less than 0.4 in all
dimensions. The actual grid is adjusted internally since the number of grid points in every
direction must be a power of 2 (exactly 𝑁 = 2𝑛 + 1).

AtomDensityTolerance = 1e-6 is used to specify, where the exponential decaying spherical s-like
atomic charge densities should be cut off. Specifying a certain value here makes sure that all
atoms contributing a density higher than the given value are considered when calculating the
amount of charges in a certain point (default: 1e-5). The appropriate cutoff radius is calculated
automatically by the code (and reported in the output). It is determined by finding the cutoff
distance for each atom (𝛼), where the s-like charge density

𝑛𝛼(𝑟) =
𝜏3𝛼
8𝜋

𝑒−𝜏𝛼𝑟
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becomes smaller than the given tolerance. Then the maximal cutoff found for all atom types in
the system is used. The quantity 𝜏𝛼 = 16

5 𝑈𝛼 is the relationship between the extintion coefficient
and the Hubbard parameter in atomic units. See Ref. [5].

In order to have a consistent calculation, the determined cutoff length must be smaller than the
width of the principal layers when doing a calculation with contacts. The program will check for
this criterion and stop if it is not fulfilled. In this example we set it exactly to the default value,
only for clarification purpose.

CutoffCheck If set to No, the code omits the check whether the cutoff for the atomic densities
(either determined by AtomDensityTolerance or directly set by AtomDensityCutoff) is larger than
the widths of the principal layers in the contacts. Please note that a cutoff bigger than the width
of any contact PL results in inconsistent calculation, so it is highly discouraged to turn this check
off, unless you exactly know what you are doing. (for experts only)

BuildBulkPotential = Yes is used to specify that at the device/contact interfaces the bulk potential
must be imposed as BC. The bulk potential is computed for an ideal contact (infinite wire). Here
we should remind that a key assumption in transport calculations is that the contacts are in
equilibrium and that the device/contact interfaces are sufficiently deep inside such that bulk
conditions are recovered. This means that the charge density and potential at this interface
should smoothly join with the bulk values. Setting this flag to Yes is important whenever there
is a charge redistribution within the contact atoms that has an effect on the bulk potential, like
in structures of heteronuclear species (e.g. SiC, GaAs, ZnO, etc.). In the case of a SiNW it is
important because of the charge redistribution between silicon and hydrogen atoms.

The bulk potential is computed by solving a Poisson problem for the contact PLs using a box
with the same size and grid as specified for the central region along the 𝑥 and 𝑦 directions. In this
way the result of the calculation is imposed on the device box without the need of interpolations.

The problem is solved by imposing periodic boundary conditions (PBC) along the 𝑧-direction
and Dirichelet BC on the other four sides (V=0). Note that this is not exactly consistent with
the contact calculation performed on the first step, in which it was assumed a periodic structure
with a large contact separation (1000 a.u.). However the two calculations produce approximately
the same result. In principles the bulk potential could be computed exactly in the same way,
by imposing a supercell with a large periodicity on the (𝑥, 𝑦) directions. The problem here is
of technical nature because it is impractical to solve the Poisson equation on such a huge box
(it would require a box with at least 1025x1025x257 grid points and a memory consumption
of about 6.5 Gb). Secondly the Poisson equation generates a singular matrix when PBC are
imposed on all sides of the box. A possibility (which is automatically switched on in supercells)
is to compute the bulk potentials with an Ewald summation technique, but turns out to be quite
time-consuming.

In order to achieve better consistency with the contact calculations it is possible to compute the
contact Hamiltonians using the Poisson solver rather than the usual GammaFunctional. This
option can be set by specifying:

Electrostatics = Poisson

DFTB+ recognizes if 1D wires are computed and imposes in this special case the same BC as in
the bulk calculation, namely PBC along 𝑧 and Dirichelet on the other four sides. This procedure
usually makes the equilibrium transmission function closer to the ideal conductance steps, since
contact and device Hamiltonians are computed on an equal footing.
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1.2.4 Model calculations without geometry

Starting from the version DFTB+XT 1.01 the calculations with external model tight-binding
Hamiltonians are possible. In particular “without geometry”, it means that the coordinates are
not used and are not required. It must be announced in the input file as

Geometry = NoGeometry{}

In the Transport block it is only one important addition: ContactPLs describes the indices of PLs
to which the electrodes are coupled:

Transport {
Device {

AtomRange = 1 37
FirstLayerAtoms = 1 9 19
ContactPLs = 1 3

}
}

Otherwise, it is described the geometry in the same way as before with the same assumptions
about the order of tight-binding states (which are assumed to be “atoms” now). One atom
corresponds to one electronic state. As a life hack, one can use the geometry from only hydrogen
atoms (with only one electronic state) to create the real space tight-binding geometry, for example
to include the self-consistent electric fields.

The Analysis block is also unchanged.

Most important is the change in the Hamiltonian block. It looks like

Hamiltonian = Model {
NumStates = 44
HamiltonianMatrix [eV] = {<<< "filename"}
SpinDegeneracy = Yes

}

The new method is Model{}, it includes the required parameter NumStates, which gives the
full number of states including the central region and the electrodes. The HamiltonianMatrix
can be used to change the Hamiltonian and the energy units. The default filename is H.mtr.
The Hamiltonian in the file should be saved as an array of real numbers. Or it can be inserted
explicitly instead of <<< "filename". Finally, SpinDegeneracy = Yes says that it can be two
electrons in every state and the same Hamiltonian is assumed for spin-up and spin-down (in the
simplest case just to multiply the DOS and transmission by 2).

The Hamiltonian should be ordered in the right way to be consistent with the ordering of sites
(atoms) in the Transport block! First the central region, then electrodes one by one, every from
two blocks. For two electrodes it looks like

𝐻 =

⎛⎜⎜⎜⎜⎜⎝
𝐻𝐶 𝑉𝐶𝐿 0 𝑉𝐶𝑅 0

𝑉 †
𝐶𝐿 𝐻𝐿0 𝐻𝐿1 0 0

0 𝐻†
𝐿1 𝐻𝐿0 0 0

𝑉 †
𝐶𝑅 0 0 𝐻𝑅0 𝐻𝑅1

0 0 0 𝐻†
𝑅1 𝐻𝑅0

⎞⎟⎟⎟⎟⎟⎠ (1.1)

At the moment users should care about the right ordering.
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1.3 Precalculation of electrodes

A transport calculation requires the execution of preliminary tasks for the computation of the
contact Hamiltonians. The contacts are assumed ideal and having the properties of a ‘bulk’
material. For this reason a special calculation must be performed in advance and results are
stored on files for subsequent uploading.

The Transport block contains a Task block, which describes the action to be carried out. The
following tasks can be executed:

Task = UploadContacts{}

for transport calculations, or

Task = ContactHamiltonian{}

to calculate the Hamiltonian for a given contact. The name of the contact must be specified via
the Id tag. Only one contact Hamiltonian can be calculated at one go, so that you have to run
DFTB+ for every contact separately.

The example below demonstrates the contact calculation for the contact called “source”:

Transport {
Device {

AtomRange = 1 24
}
Contact {

Id = "source"
AtomRange = 25 44

}
Contact {

Id = "drain"
AtomRange = 45 58

}
Task = ContactHamiltonian {

ContactId = "source"
}

}

1.4 Calculation of transmission and density of states

Using the electrode Hamiltonians produced with Task = ContactHamiltonian{}, the surface
Green functions for the contacts can be calculated, and open boundary conditions are applied.
To calculate the electronic transport through the device, defined in Geometry, Transport and
Hamiltonian blocks, one should define the additional parameters in the Analysis block.

1.4.1 Analysis input block

In the simplest case it looks like

Analysis{
TransmissionAndDOS{

EnergyRange [eV] = -5.0 -3.0
EnergyStep [eV] = 0.02
Region = {

11
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Atoms = 1:37
}

}
}

EnergyRange and EnergyStep determine the energy range over which the transmission function
and local density of states are computed and the energy step.

Region defines atomic ranges or orbitals where the local density of states is calculated projected.
The definition in the block follow the same syntax as a DFTB+ calculation without transport.

See the USER MANUAL for details. The examples of transport calculations are given in the
tutorial, see Chapter 4 Electron transport calculations in armchair nanoribbons.

12



Part II

DFTB+XT :
Tutorial on 2D Carbon Materials

13





CHAPTER 2

Introduction

This tutorial is aimed at Master and PhD students with background knowledge of the theory of
electronic structure and quantum transport at nanoscale. Minimal knowledge of Unix/Linux
is also required. Knowledge of the DFTB+XT code itself is not necessary, but familiarity with
the basic ideas behind the Density Functional Theory (DFT), the Density Functional Tight
Binding (DFTB) method, the Landauer method and the Green function technique of the quantum
transport theory could be helpful.

2.1 System environment

The easiest way to use this tutorial is to download the TraNaS OpenSuite Live ISO image from
the tranas.org/opensuite site, which contains a preconfigured x86_64/Linux system with all the
necessary tools for the tutorial. From version 1.03 we base the live system at the Manjaro Linux
(manjaro.org). The live system is fully functional actual Manjaro distribution which can be used
to install Manjaro Linux.

One can directly boot the ISO image within a virtual machine (e.g. VirtualBox ). Alternatively,
one can create a bootable USB-drive (e.g. with usb-creator under Linux or Universal USB
Installer under Windows), which can then be used to boot up an X86_64 machine with the live
system. Note the username manjaro and password manjaro for live system.

In case you want to try the tutorial outside of the live system, you will need the following tools
to be installed:

• dftb+ – DFTB+XT binary (version 1.02 or higher).

• waveplot – Command line tool to create volumetric data files representing electron densities
and wavefunctions. (included into the DFTB+XT package and is installed together with
dftb+)

• nano – A simple graphical text editor. You can alternatively use your preferred editor
instead.

• gen2xyz, xyz2gen, dp_dos, dp_bands, repeatgen, makecube – Various conversion scripts from
the dptools package. (included into the DFTB+XT package, tools/dptools/, but should be
installed separately)

• jmol – Graphical molecular visualisation tool. You can alternatively use any molecular
visualiser able to plot volumetric data and isosurfaces.

• buildwire – Can be used to build a 1D geometry with the right ordering (included into the
DFTB+XT package, tools/transport/, but should be installed separately).
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• paraview – Software to visualise .vtk or .cube files. You can alternatively use your preferred
program instead.

• plotxy[.py] – Command line wrapper around the matplotlib python library (included into
the DFTB+XT package, tools/misc/ ).

2.2 General notes

• The working directory of each of the tutorial examples is indicated at the beginning of its
corresponding section. Please change to that directory and execute the specified commands
from within that directory.

• It is impossible to describe all options accepted by DFTB+XT within the tutorial. The
detailed description of input and output is given in the USER MANUAL. Always make sure,
that you understand the input file for DFTB+ (dftb_in.hsd). If you find any unexplained
options, consult the DFTB+XT documentation page and the DFTB+ documentation page
for details.

• In order to save you some typing, many of the necessary commands have been already
collected into small scripts. Please have a look at the content of these scripts before
executing them, making sure you understand why those commands must be executed in
that order to obtain the necessary results.

• The TraNaS OpenSuite Live version of the TraNaS OpenSuite including DFTB+XT code
is free for use and full functional. It can be used to install the standard Manjaro Linux
operating system with preinstalled TraNaS OpenSuite.

2.3 Creating of the directory with inputs

Please download the file tutorial_input.zip from the TraNaS site or copy it from the
doc/dftb+/tutorial/ folder of the DFTB+XT package. Then decompress it with:

unzip tutorial_input.zip

in some directory. The directory tree with input files and some additional files to speed up the
calculations is created.

If one uses the TraNaS OpenSuite Live, the tree with input files is already placed in
/home/manjaro/Tutorial, where one can also find the Guide (guide.pdf ) and the Manual (man-
ual.pdf ) files. The same files are place to the Desktop.

Note, that if you first install the Manjaro Linux from Live ISO to the hard disk, the tutorial
materials will be placed in your home directory.
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CHAPTER 3

Electronic structure of 2D carbon materials

Enter the directory elect/. All directories given in this part of the tutorial are subdirectories of
the elect/ directory.

3.1 Perfect graphene

First we will investigate some of the basic properties of the 2D graphene structure.

3.1.1 Geometry, density of state

[Working directory: elect/graphene/latopt/ ]

Preparing the input

Graphene has a hexagonal lattice with two C atoms in its primitive unit cell, which is specified
in the supplied GEN-formatted geometry file. Open the file geo.gen in a text editor

nano geo.gen

You should see the following content:

2 S
C
1 1 0.1427557522E+01 0.0000000000E-00 0.0000000000E-00
2 1 -0.1427557522E+01 0.0000000000E-00 0.0000000000E-00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.2141036415E+01 -0.1236340643E+01 0.0000000000E-00
0.2141036415E+01 0.1236340643E+01 0.0000000000E-00
0.0000000000E-00 0.0000000000E-00 0.5000000000E+02

The format of this GEN file is the following:

• The first line contains the number of atoms (2) and the boundary condition type (S for a
periodic crystal).

• The second line lists all atomic elements present in the system separated by white space (C
only in this example).

• Then a squence of lines follow, one for every atom in the system, each starting with a
dummy integer (its sequential number in the structure), the type of the atom according to
the list of elements in the second line of the file (1 for carbon in this example), and finally
the cartesian coordinates of the atom in angstroms.
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• Since the structure is periodic, appropriate information for this boundary condition must
be provided after the atomic coordinates. For a GEN file of type S, this is the cartesian
coordinates of the origin followed by the 3 cartesian lattice vectors (one per line). DFTB+

uses three dimensional periodic boundary conditions. In order to separate the graphene
sheets from each other and to prevent interaction between them, the third lattice vector,
which is orthogonal to the plane of graphene, has been chosen to have a length of 50
angstroms.

Before running the code, you should check, whether the specified unit cell, when repeated along
the lattice vectors, indeed results in a proper graphene structure. To repeat the geometry along
the first and second lattice vectors a few times (the repeatgen script), convert it to XYZ-format
(the gen2xyz script) and visualize it:

repeatgen geo.gen 4 4 1 > geo.441.gen
gen2xyz geo.441.gen
jmol geo.441.xyz &

You should then see a graphene sheet displayed, similar to Figure 4x4x1 graphene supercell
(page 18).

Fig. 3.1: 4x4x1 graphene supercell

Now open the DFTB+ control file dftb_in.hsd.

nano dftb_in.hsd

You should see the following options within it:

• First we include the GEN-formatted geometry file, geo.gen, using the inclusion operator
(<<<):

Geometry = GenFormat {
<<< "geo.gen"

}

• Then we specify the ConjugateGradient driver to optimize the geometry and also the
lattice vectors. Since neither the angle between the lattice vectors nor their relative lengths
should change during optimization, we carry out an isotropic lattice optimization:

18



TraNaS OpenSuite Guide, version 1.03 (release) January 18, 2020

Driver = ConjugateGradient {
LatticeOpt = Yes
Isotropic = Yes

}

• Then the details of the DFTB hamiltonian follow:

Hamiltonian = DFTB {

• Within this block, we first specify the location of the parametrization files (the Slater-Koster
files) and provide additional information about the highest angular momentum for each
element (this information is not yet stored in the Slater-Koster-files):

MaxAngularMomentum {
C = "p"

}
SlaterKosterFiles = Type2FileNames {

Prefix = "../../../sk/"
Separator = "-"
Suffix = ".skf"

}

Please note, that the highest angular momentum is not a free parameter to be changed,
but it must correspond to the value given in the documentation section of the correspoding
homonuclear Slater-Koster-files (e.g. see the C-C.skf file for carbon).

• We use the self-consistent charge approach (SCC-DFTB), enabling charge transfer between
the atoms:

SCC = Yes

• As graphene is metallic we smear the filling function to achieve better SCC-convergence:

Filling = Fermi {
Temperature [Kelvin] = 100

}

• For the Brillouin-zone sampling we set our k-points according to the 48 x 48 x 1 Monkhorst-
Pack sampling scheme. This contains those k-points which would be folded onto the k-point
(0.5, 0.5, 0.0) of an enlarged supercell consisting of the primitive unit cell repeated by (48,
0, 0), (0, 48, 0) and (0, 0, 1). This can be easily specified with the SupercellFolding
option, where one defines those supercell vectors followed by the target k-point.

KPointsAndWeights = SuperCellFolding {
48 0 0
0 48 0
0 0 1
0.5 0.5 0.0

}

• We also want to do some additional analysis by evaluating the contributions of the s- and
p-shells to the density of states (DOS). Accordingly, we instruct DFTB+ in the Analysis
block to calculate the contribution of all C atoms to the DOS in a shell-wise manner (s
and p) and store the shell-contributions in files starting with a prefix of pdos.C :

Analysis {
ProjectStates {

Region {
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Atoms = C
ShellResolved = Yes
Label = "pdos.C"

}
}

}

Running the code

When you run DFTB+ , you should always save its output into a file for later inspection. We
suggest using a construction like this (output is saved into the file output):

dftb+ | tee output

You will see that DFTB+ optimizies the geometry of graphene by changing the lattice vectors
and ion coordinates to locally minimise the total energy. As the starting geometry is quite close
to the optimum one, the calculation should finish almost immediately.

Apart from the saved output file (output), you will find several other new files created by the
code:

dftb_pin.hsd Contains the parsed user input with all the default settings for options
which have not been explicitely set by the user. You should have look at it if you are
unsure whether the defaults DFTB+ used for your calculation are appropriate, or if you
want to know which other options you can use to adjust your calculation.

detailed.out Contains detailed information about the calculated physical quantities
(energies, forces, eigenlevels, fillings, charges, etc.) obtained in the last SCC cycle
performed.

band.out Eigenvalues (in eV) and fillings for each k-point and spin channel.

charges.bin Charges of the atoms at the last iteration, stored in binary format. You
can use this file to restart a calculation with those atomic charges.

geo_end.xyz, geo_end.gen Final geometry in both XYZ and GEN formats.

pdos.C.1.out, pdos.C.2.out Output files containing the projected density of states for
the first and second angular shells of carbon (in this case the 2s and 2p shells). Their
format is similar to band.out.

Analysing results

The very first thing you should check is whether your calculation has converged at all to a relaxed
geometry. The last line of the output file contains the appropriate message:

Geometry converged

This means that the program stopped because the forces on the atoms which are allowed to
move (all of them in this example) were less than a given tolerance (specified in the option
MaxForceComponent, which defaults to 1e-4 atomic units) and not instead because the maximal
number of geometry optimization steps have been executed (option MaxSteps, default 200).

You should visualize the resulting structure using Jmol (or any other molecular visualization
tool). You should probably repeat the geometry again to get a better idea how it looks like, as
we did for the starting structure above. The distance between the C atoms should be very similar
to those in the initial structure.
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In order to visualize the density of states and the partial density of states, you should convert
the corresponding human readable files (with prefix .out) to XY-format data

dp_dos band.out dos.dat
dp_dos -w pdos.C.1.out pdos.C.1.dat
dp_dos -w pdos.C.2.out pdos.C.2.dat

Please note the flag -w, which is mandatory when converting partial density of states data for
plotting. You can obtain more information about various flags for dp_dos by issuing:

dp_dos -h

You can visualize the DOS and the PDOS for the s- and p-shells of carbon in one picture using
the plotxy tool, which is a simple command line wrapper around the matplotlib python library
(issue the command plotxy -h for help):

plotxy --xlabel "Energy [eV]" --ylabel "DOS" dos.dat pdos.C.1.dat pdos.C.2.dat &

You can use also any other program (gnuplot, xmgrace) which can visualize XY-data. You should
see something similar to Figure DOS and PDOS of graphene (page 21).

Fig. 3.2: DOS and PDOS of graphene

The position of the Fermi level (at -4.67 eV) can be read out from the detailed.out file, either
directly or by using an appropriate grep command:

grep "Fermi level" detailed.out

As expected for graphene, the DOS vanishes at the Fermi-level. Around the Fermi-level, all states
are composed of the p-orbitals of the carbons, the s-orbitals only contribute to energeticaly much
lower and much higher states. Also, one can observe the van-Hove-singularties. The wiggles
at around 0 eV and at higher energy are artifacts. Using more k-points for the Brillouin-zone
sampling or using a slightly wider broadening function in dp_dos would smooth them out.

3.1.2 Band structure

[Working directory: elect/graphene/bands/ ]

Band structure calculations in DFTB (as in DFT) always consist of two steps:

21



TraNaS OpenSuite Guide, version 1.03 (release) January 18, 2020

1. Calculating an accurate ground state charge density by using a high quality k-point
sampling.

2. Determining the eigenvalues at the desired k-points of the band structure, using the density
obtained in the previous step. The density is not changed during this step of the band
structure calculation.

Step 1 you just have executed, so you can copy the final geometry and the data file containing
the converged charges from that calculation into your current working directory:

cp ../latopt/geo_end.gen .
cp ../latopt/charges.bin .

Have a look on the dftb_in.hsd file for the band structure calculation. It differs from the previous
one only in a few aspects:

• We use the end geometry of the previous calculation as geometry:

Geometry = GenFormat {
<<< "geo_end.gen"

}

• We need static calculation only (no atoms should be moved), therefore, no driver block has
been specified.

• The k-points are specified along specific high symmetry lines of the Brillouin-zone (K-
Gamma-M-K):

KPointsAndWeights = KLines {
1 0.33333333 0.66666666 0.0 # K

20 0.0 0.0 0.0 # Gamma
20 0.5 0.0 0.0 # M
10 0.33333333 0.66666666 0.0 # K

}

• We initialize the calculation with the charges stored during the previous run:

ReadInitialCharges = Yes

• We do not want to change the charges during the calculation, therefore, we set the maximum
number of SCC cycles to one:

MaxSCCIterations = 1

Let’s run the code and convert the band structure output to XY-format:

dftb+ | tee output
dp_bands band.out band

The dp_bands tool extracts the band structure from the file band.out and stores it in the file
band_tot.dat. For spin polarized systems, the name of the output file would be different. Use:

dp_bands -h

to get help information about the arguments and the possible options for dp_bands.

In order to investigate the band structure we first look up the position of the Fermi level in the
previous calculation performed with the accurate k-sampling
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grep "Fermi level" ../latopt/detailed.out

which yields -4.67 eV, and then visualize the band structure by invoking

plotxy -L --xlabel "K points" --ylabel "Energy [eV]" band_tot.dat &

This results in the band structure as shown in Figure Band structure of graphene (page 23).

Fig. 3.3: Band structure of graphene

You can see the linear dispersion relations around the point K in the Brillouin-zone (k-points 0
and 51 in our circuit) which is a very typical characteristic of graphene.

3.2 Zigzag nanoribbon

Next we will study some properties of a hydrogen saturated carbon zigzag nanoribbon.

3.2.1 Calculting the density and DOS

[Working directory: elect/zigzag/density/ ]

The initial geometry for the zigzag nanoribbon contains one chain of the structure, repeated
periodically along the z-direction. The lattice vectors orthogonal to the periodicity (along the x-
and y- axis) are set to be long enough to avoid any interaction between the repeated images.

First convert the GEN-file to XYZ-format and visualize it:

gen2xyz geo.gen
jmol geo.xyz &

Similar to the case of perfect graphene, you should check first the initial geometry by repeating it
along the periodic axis (the third lattice vector in this example) and visualize it. The necessary
steps are collected in the file checkgeo.sh. Please have a look at its content to understand what
will happen, and then issue
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sh checkgeo.sh

to obtain the molecule shown in Figure Section of an H-saturated zigzag nanoribbon (page 24).

Fig. 3.4: Section of an H-saturated zigzag nanoribbon

The control file dftb_in.hsd is similar to the previous examples, with a few differences only:

• We use the 1 x 1 x 24 Monkhorst-Pack k-point set to sample the Brillouin-zone, since the
ribbon is only periodic along the direction of the third lattice vector. The two other lattice
vectors have been choosen to be long enough to avoid interaction between the artificially
repeated ribons.:

KPointsAndWeights = SupercellFolding {
1 0 0
0 1 0
0 0 24
0.0 0.0 0.5

}

• In order to analyze, which atoms contribute to the states around the Fermi-level, we create
four projection regions containing the saturating H-atoms, the C atoms in the outermost
layer of the ribbon, the C atoms in the second outermost layer and finally the C atoms in
the thirds outermost layer, respectively. Since the ribbon is mirror symmetric, we include
the corresponding atoms on both sides in each projection region:

ProjectStates {

# The terminating H atoms on the ribbon edges
Region {

Atoms = H
Label = "pdos.H"

}

# The surface C atoms
Region {

Atoms = 2 17
Label = "pdos.C1"

}

# The next row of C atoms further inside
Region {
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Atoms = 3 16
Label = "pdos.C2"

}

# Some more 'bulk-like' C atoms even deeper
Region {

Atoms = 4 15
Label = "pdos.C3"

}
}

You can run the program and convert the output files by issuing:

sh run.sh

When the program has finished, look up the Fermi-level and visualize the DOS and PDOS
contributions. The necessary commands are collected in showdos.sh:

sh showdos.sh

When you zoom into the area around the Fermi level (-4.57 eV), you should obtain something
like Figure DOS of the zigzag nanoribbon around the Fermi energy (page 25).

Fig. 3.5: DOS of the zigzag nanoribbon around the Fermi energy

You can see that the structure is clearly metallic (displaying a non-zero density of states at the
Fermi energy). The states around the Fermi-level are composed of the orbitals of the C atoms in
the outermost and the third outermost layer of the ribbon. There is no contribution from the C
atom in the layer in between or from the H atoms to the Fermi level.

3.2.2 Band structure

[Working directory: elect/zigzag/bands/ ]

Now let’s calculate the band structure of the zigzag nanoribbon. The commands are in the script
run.sh, so just issue:
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sh run.sh

You will see DFTB+ finishing with an error message

WARNING!
-> SCC is NOT converged, maximal SCC iterations exceeded

Normally, it would mean that DFTB+ did not manage to find a self consistent charge distribution
for its last geometry. In our case, however, it is not an error, but the desired behaviour. We have
specified in dftb_in.hsd the options

ReadInitialCharges = Yes
MaxSCCIterations = 1

requiring the program to stop after one SCC iteration. The charges are at this point not self
consistent with respect to the k-point set used for sampling the band structure calculation.
However, k-points along high symmetry lines of the Brillouin-zone, as used to obtain the band
structures, usually represent a poor sampling. Therefore the a converged density obtained with
an accurate k-sampling should be used to obtain the eigenlevels, and no self consistency is needed.

To look up the Fermi-level and plot the band structure use the commands in showbands.sh:

sh showbands.sh

You should obtain a band structure similar to Figure Band structure of the zigzag nanoribbon
(page 26). Again, one can see, that there are states around the Fermi-energy, so the nanoribbon
is metallic.

Fig. 3.6: Band structure of the zigzag nanoribbon

3.3 Armchair nanoribbon with defects

We now investigate a hydrogen saturated armchair carbon nanoribbon, examining both the
perfect ribbon and two defective structures, each with a vacancy at a different position in the
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ribbon. In order to keep the tutorial short, we will not relax the vacancies, but will only remove
one atom from the perfect structure.

3.3.1 Perfect armchair nanoribbon

Total energy and density of state

[Working directory: elect/armchair/perfect_density/ ]

The steps to calculate the DOS of the perfect H-saturated armchair nanoribbon are the same as
for the zigzag case. First check the geometry with the help of repeated supercells:

sh checkgeo.sh

You will see a repeated image of the perfect armchair nanoribbon unit cell (Figure Perfect
armchair nanoribbon unit cell (page 27)).

Fig. 3.7: Perfect armchair nanoribbon unit cell

The edge of the ribbon is visually different from the zigzag case. As it turns out, this also has
some physical consequences. Let’s calculate the electronic density and extract the density of
states:

sh run.sh

If you look up the calculated Fermi-level and then visualize the DOS

sh showdos.sh

you can immediately see (Figure DOS of the perfect armchair nanoribbon (page 28)) that there
are no states around the Fermi-energy (-4.4 eV), i.e. the investigated armchair nanoribbon is
non-metallic.

Band structure

[Working directory: elect/armchair/perfect_bands]

Let’s have a quick look at the band structure of the armchair H-saturated ribbon. The steps are
the same as for the zigzag case, so just issue:

sh run.sh
sh showbands.sh

You should obtain a band structure like in Figure The band structure of the perfect hydrogen
passivated armchair nanoribbon. The Fermi energy is at -4.4 eV. (page 28). You can read off
the position of the band edges, when you zoom into the energy region around the gap: The
valence band edge and the conduction band edge are in the Gamma point at -4.7 and -4.2 eV,
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Fig. 3.8: DOS of the perfect armchair nanoribbon

respectively. You can also easily extract this information from the band.out file, when you look
where to occupation goes from nearly 2.0 to nearly 0.0 in the first k-point (the Gamma point).

Fig. 3.9: The band structure of the perfect hydrogen passivated armchair nanoribbon. The
Fermi energy is at -4.4 eV.

3.3.2 Armchair nanoribbon with vacancy

Density and DOS

[Working directory: elect/armchair/ ]

As next, we should investigate two armchair nanoribbons with a vacancy in each.
The inputs can be found in the subdirectories elect/armchair/vacancy1_density and
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elect/armchair/vacancy2_density and you can visualize both with the command

sh showgeom_v12.sh

As you can see on Figures Armchair nanoribbon with vacancy (structure 1) (page 29) and
Armchair nanoribbon with vacancy (structure 2) (page 29), the vacancy is in the two cases on
different sublattices.

Fig. 3.10: Armchair nanoribbon with vacancy (structure 1)

Fig. 3.11: Armchair nanoribbon with vacancy (structure 2)

The two vacancies (structures 1 and 2) are located on different sublattices. Since the geometries
are periodic along the z-direction, the defects are also repeated. As we would like to calculate a
single vacancy, we have to make our unit cell for the defect calculation large enough to avoid
significant defect-defect interactions. In this case, the defective cells contain twelve unit cells.

In order to calculate the electron density of both vacancies, issue:

sh run_v12.sh

This will take slightly longer than the previous calculations, since each system contains more
than four hundred atoms.

We want to analyse the density of states of the two different vacancies, together with that of the
defect-free system. The commands necessary to extract the DOS of all three configurations and
show them in one figure have been stored in the script showdos_perf_v12.sh. Execute it

sh showdos_perf_v12.sh

to obtain a figure like Figure The DOS of the perfect nanoribbon is indicated by solid blue line,
the DOS of the nanoribbons with vacancies with green and red lines, respectively. (page 30).

As you can see, in contrast to the zigzag nanoribbon, the perfect armchair nanoribbon is insulating
as it has no states around the Fermi-energy (-4.45 eV). The structures with vacancies, on the
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Fig. 3.12: The DOS of the perfect nanoribbon is indicated by solid blue line, the DOS of the
nanoribbons with vacancies with green and red lines, respectively.

other hand, introduce dangling (unsaturated) bonds, leading to unoccupied states around the
Fermi-energy. We can also see, that the defects affect the band edges, which are shifted with
respect to their position in the perfect structure. It also seems that the valence band edge is
more affected than the conduction band edge, and in the case of vacancy 2 (red line) the effect is
significantly larger than for vacancy 1 (green line).

Vacancy formation energy

You should also be able to calculate the formation energies of the two vacancies. The formation
energy 𝐸form of the vacancy in our case can be calculated as

𝐸form = (𝐸vac + 𝐸C)− 12× 𝐸perf

where 𝐸vac is the total energy of the nanoribbon with the vacancy present, 𝐸C is the energy
of a C-atom in its standard phase and 𝐸perf is the energy of the perfect nanoribbon. Since the
defective nanoribbons contain 12 unit cell of the perfect one, the energy of the perfect ribbon unit
cell has to be multiplied by twelve. As a standard phase of carbon, we will take perfect graphene
for simplicity. The energy of the C-atom in its standard phase is then obtained by dividing
the total energy of the perfect graphene primitive unit cell by two. (Look up this energy from
detailed.out in the directory elect/graphene/density.) By calculating the appropriate quantities
you should obtain ∼8.5 eV for the formation energy of both vacancies. This is quite a high
value, but you should recall that the vacancies have not been structurally optimised, and their
formation energies are therefore, significantly higher than for the relaxed configurations.

Defect levels

[Working directory: elect/armchair/vacancy2_wf/ ]

Finally we should identify the localised defect levels for vacancy 2 and plot the corresponding
one-electron wavefunctions.
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The vacancy was created by removing one C-atom, which had three first neighbors. Therefore,
three sp2 type dangling bonds remain in the lattice, which will then form some linear combinations
to produce three defect levels, which may or may not be in the band gap. The DOS you have
plotted before, indicates there are indeed defect levels in the gap, but due to the smearing it is
hard to say how many they are.

We want to investigate the defect levels at the Gamma point, as this is where the perfect
nanoribbon has its band edges. We will therefore do a quick Gamma-point only calculation for
vacancy structure 2 using the density we obtained before. We will set up the input to write out
also the eigenvectors (and some additional information) so that we can plot the defect levels with
waveplot later. This needs the following additional settings in dftb_in.hsd :

Options {
WriteEigenvectors = Yes
WriteDetailedXML = Yes
WriteDetailedOut = No

}

To just run the calculation

sh run.sh

and open the band.out file. You will see, that you have three levels (levels 742, 743 and 744 at
energies of -4.51, -4.45 and -4.45 eV, respectively) which are between the energies of the band
edge states of the perfect ribbon. We will visualize those three levels by using the waveplot tool.

Waveplot reads the eigenvectors produced by DFTB+ and plots real space wave functions and
densities. The input file waveplot_in.hsd can be used to control which levels and which region
waveplot should visualize, and on what kind of grid. In the current example, we will project the
real part of the wave functions for the levels 742, 743 and 744. In order to run Waveplot, enter:

waveplot | tee output.waveplot

The calculation could again take a few minutes. At the end, you should see three files with the .cube
prefix, containing the volumetric information for the three selected one-electron wavefunctions.

We will use Jmol to visualize the various wave function components. Unfortunately, the visual-
ization of iso-surfaces in Jmol needs some scripting. You can find the necessary commands in
the files show*.js. You can either type in these commands in the Jmol console (which should be
opened via the menu File | Console...) or pass it to Jmol using the -s option at start-up. For
the case latter you will find prepared command to visualize the various orbitals in the files

sh showdeflev1.sh && sh showdeflev2.sh && sh showdeflev3.sh

Looking at the defect levels, you can see that the defect level lowest in energy (742) has a
significant contribution on the atoms around the defect, but also a non-negligible delocalized
part smeared over almost all atoms in the system. Apparently a localized defect level has
hybridized with the delocalized valence band edge state, resulting in a mixture between localized
and non-localized state. The other two defect levels, on the other hand, have wavefunctions
which are well localized on the atoms around the vacancy site. Note that in accordance with the
overall symmetry of the system, the defect levels are either symmetric or antisymmetric with
respect to the mirror plane in the middle of the ribbon.
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Fig. 3.13: Wave function of the lowest defect level of the hydrogen saturated armchair nanoribbon
with a vacancy. Blue and red surfaces show indicate isosurfaces at +0.02 and -0.02 atomic units,
respectively.

Fig. 3.14: Wave function of the second lowest defect level of the hydrogen saturated armchair
nanoribbon with a vacancy.

Fig. 3.15: Wave function of the highest defect level of the hydrogen saturated armchair
nanoribbon with a vacancy.
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CHAPTER 4

Electron transport calculations in armchair nanoribbons

In this sections of the tutorial we will learn how to set up self-consistent and non self-consistent
simulations with open boundary conditions. We will then calculate the density of states and the
transmission coefficients and then analyse the results in comparison with the previous periodic
calculations.

If you have not done so yet, please download the file tutorial_input.zip and decompress it by
issuing:

unzip tutorial_input.zip

in some directory. Then enter the directory transport/. All directories given in this part of the
tutorial are sub-directories of the transport/ directory.

4.1 Non-SCC Pristine armchair nanoribbon

[Working directory: transport/agr_nonscc/ideal/ ]

4.1.1 Preparing the structure

When we run a transport calculation with open boundary conditions, the geometric structure
specified in the input needs to obey some rules. The system must consist of an extended device
(or molecule) region, and two or more semi-infinite bulk contacts. The bulk contacts are described
by providing two principal layers for each contact.

A Principal Layer (PL) is defined as a contiguous group of atoms that have finite interaction
only with atoms belonging to adjacent PLs. In a sense, a PL is a generalisation of the idea of
nearest neighbour atoms to the idea of nearest neighbour blocks. The PL partitioning in the
electrodes is used by the code to retrieve a description of the bulk system. PLs may be defined,
as we will see, in the extended device region to take advantage of the iterative Green function
solver algorithm.

Additional information about the definition of PLs, contacts and extended device region can be
found in the manual and in the on-line recipes.

In the case of an ideal one-dimensional system, all the PLs are identical. The system we start
with is an infinite armchair graphene nanoribbon (AGR), therefore the partitioning into device
and contact regions is somewhat arbitrary. We will therefore start from a structure file containing
a single PL (2cell_7.gen), which has been previously relaxed. The PL can be converted to XYZ
format by using the gen2xyz script and visualised with Jmol :
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gen2xyz 2cell_7.gen
jmol 2cell_7.xyz

The structure is shown in Figure Armchair nanoribbon principal layer (PL) (page 34)

Fig. 4.1: Armchair nanoribbon principal layer (PL)

As you may notice, we did not take a single unit cell length as a PL, but rather two unit cells.
This choice is dictated by the definition of the PL itself, as we want to avoid non-zero interactions
between second-neighbour PLs. This is better explained by referring to Figure Layer definition
(page 34). The red carbon atoms represent the closest atoms which would belong to non-nearest
neighbour PLs, and these have a separation of 0.568 nm, as shown in Figure Layer definition
(page 34). The carbon-carbon interaction is non zero up to a distance of 6 a.u., therefore the
interaction between the two red atoms would be small, but non zero. Hence this is too small a
separation for a one unit cell long section of nanoribbon to be used as the PL.

Fig. 4.2: Layer definition

As currently there is no way to damp out small interactions, the PL must contain two unit cells
in this case, as shown in figure Layer definition (page 34). It follows that the correct definition
of a PL depends both on the geometry of the system and the interaction cut-off distance.

After having defined a proper PL, we then build a structure consisting of a device region with 2
PLs and contacts at each end of this region, each with 2 PLs.

Note: For the pristine system, the equilibrium results should not depend on the length of the
device region, as the represented system is an infinite ideal nanoribbon with discrete translational
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symmetry along the ribbon.

The input atomic structure must be defined according to a specific ordering: the device atoms
come first, then each contact is specified, starting with the PL closer to the device region. For an
ideal system defined by repetition of identical PLs, the tool buildwire (distributed with the code)
can be used to build a 1D geometry with the right ordering.

To see the input parameters, one can type:

buildwire -h

with the output:

buildwire pl.gen dir npls [-s]
pl.gen: gen file with PL definition (supercell)
dir: 1=x, 2=y, 3=z
npls: Number of pls in the scattering region
-s: (optional) makes a supercell structure

here pl.gen is the name of the file containing the input supercell, dir npls are the direction and
the number of principal layers in the device region (we will set this to be 2). Last parameter is
used to make periodic structure in perpendicular to transport directions.

When you type:

buildwire 2cell_7.gen 3 2

the following output will be visualised:

structure built
Input for dftb+:

Transport{
Device{

AtomRange = 1 136
FirstLayerAtoms = 1 69

}
Contact{

Id = "source"
AtomRange = 137 272

}
Contact{

Id = "drain"
AtomRange = 273 408

}
Task= contactHamiltonian{

contactId = "source"
}

}

we discuss it in detail below.

A file Ordered_2cell_7.gen will have been created, which we will rename device_7.gen for the
following:

mv Ordered_2cell_7.gen device_7.gen

We can better understand the ordering of the atomic indexes if we convert this structure to XYZ,
open it with jmol and then change the colours of specific ranges of atoms by using the following
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syntax in the jmol console (for example, we select here the first contact and split it into two
sub-ranges containing its first and second PLs):

> select atomno>136 && atomno<205
> color yellow
> select atomno>204 && atomno<273
> color red

In Figure The PLs of contact 1 (page 36) a Jmol export of the structure is shown.

Fig. 4.3: The PLs of contact 1

The yellow and red atoms represent the first and second PLs of the first contact. When you
build a structure yourself, it is always a good idea to use a visualiser and verify that the atomic
indices are consistent with the transport setup definitions.

One should note the difference between supercell and cluster definitions in the gen structure file.
From the point of view of an open boundary condition calculation, Supercell (S in the first line)
and Cluster (C in the first line) have a slightly different meaning with respect to a canonical dftb
calculation. By Supercell we mean any structure which is periodic in any direction transverse
to the transport direction, while for cluster we mean any structure not periodic in any direction
transverse to transport. It follows that purely 1D systems, like nanowires and nanoribbons, should
be regarded as clusters (C).

The file device_7.gen contains the correct structure, defined as a cluster and with the proper
atom ordering:

408 C
C H

1 1 37.831463060000 -20.000000000000 0.710000000000
2 1 39.061219140000 -20.000000000000 1.420000000000
3 1 39.061219140000 -20.000000000000 2.840000000000
4 1 37.831463060000 -20.000000000000 3.550000000000
5 1 35.371950920000 -20.000000000000 0.710000000000
6 1 36.601706990000 -20.000000000000 1.420000000000
7 1 36.601706990000 -20.000000000000 2.840000000000
8 1 35.371950920000 -20.000000000000 3.550000000000
........
65 2 20.880312110000 -20.000000000000 -11.870830122700
66 2 20.880312110000 -20.000000000000 -9.429169877000
67 2 40.025607920000 -20.000000000000 -11.870893735700
68 2 40.025607920000 -20.000000000000 -9.429106264000
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This is the file we get after running buildwire withtout the parameter -s. Note that the
numbering of atoms at the start of each line, as output by buildwire are sequential according to
the numbering of the initial structure, not its global position in the output file.

If we use the parameter -s:

buildwire 2cell_7.gen 3 2 -s

we get the file:

408 S
C H

1 1 37.831463060000 -20.000000000000 0.710000000000
2 1 39.061219140000 -20.000000000000 1.420000000000
3 1 39.061219140000 -20.000000000000 2.840000000000
4 1 37.831463060000 -20.000000000000 3.550000000000
5 1 35.371950920000 -20.000000000000 0.710000000000
6 1 36.601706990000 -20.000000000000 1.420000000000
7 1 36.601706990000 -20.000000000000 2.840000000000
8 1 35.371950920000 -20.000000000000 3.550000000000
........
65 2 20.880312110000 -20.000000000000 -11.870830122700
66 2 20.880312110000 -20.000000000000 -9.429169877000
67 2 40.025607920000 -20.000000000000 -11.870893735700
68 2 40.025607920000 -20.000000000000 -9.429106264000
0.000000000000000 0.000000000000000 0.000000000000000
59.676097169999998 0.0000000000000000 0.0000000000000000
0.0000000000000000 -40.000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 51.119999999999997

Note the change in the first line of the C (cluster) to S (supercell) and addition of the last four
lines, which would normally only be defined for periodic systems.

Next, we set up the input file for a transmission calculation.

4.1.2 Transmission and density of states

In the DFTB+ input format, settings related to a transport calculation may be required to
appear in separate sections of the dftb_in.hsd file, depending on the functionality they invoke.
In the following we will set up the simplest open boundary condition calculation: a calculation of
transmission coefficients according to the Landauer-Caroli formula, assuming a non-SCC DFTB
hamiltonian. We will analyse and comment the different sections contained in the file dftb_in.hsd.

First, we have the specification of the geometry:

Geometry = GenFormat {
<<< 'device_7.gen'
}

This follows the same rule as in a regular DFTB+ calculation, except for the fact that the
structure should follow the specific partitioning structure explained in the previous section.

Whenever an open boundary system is defined, we have to specify a block named Transport
which contains information on the system partitioning and additional information about the
contacts to the device:

Transport {
Device {
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AtomRange = 1 136
FirstLayerAtoms = 1 69

}
Contact {

Id = "source"
AtomRange = 137 272
FermiLevel [eV] = -4.7103
potential [eV] = 0.0

}
Contact {

Id = "drain"
AtomRange = 273 408
FermiLevel [eV] = -4.7103
potential [eV] = 0.0

}
}

Here we have used the indexes printed by buildwire. Device contains two fields: AtomRange
specifies which atoms belong to the extended device region (1 to 136) and FirstLayerAtoms
specify the starting index of the PLs in the device region. This field is optional, but if not
specified the iterative algorithm will not be applied and the calculation will be slower, even though
the result will be still correct. Then we have the definitions of the contacts. In this example
we define a two terminal system, but in general N contacts are allowed. A contact is defined
by an Id (mandatory), the range of atoms belonging to the contact specified in AtomRange
(mandatory) and a FermiLevel (mandatory). The potential is set by default to 0.0, therefore
need not be specified in this example. Note that according to equilibrium Green function theory,
the Fermi level and the contact potential are not necessary to calculate the transmission curve,
but are required to calculate the current via the Landauer formula, as they would determine the
occupation distribution in the contacts.

Then we have the Hamiltonian block, which describes how the initial Hamiltonian and the SCC
component, if any, will be calculated:

Hamiltonian = DFTB {
SCC = No
MaxAngularMomentum = {

C = "p"
H = "s"

}

SlaterKosterFiles = Type2FileNames {
Prefix = "../../../sk/" # To be substituted with the path to

# SK parameters on your local disk
Separator = "-"
Suffix = ".skf"

}

Solver = TransportOnly{}

}

In this example we will calculate the transmission according to Caroli (referred by some authors
as Fisher Lee) formula in a non-SCC approximation, i.e. the Hamiltonian is directly assembled
from the Slater-Koster files and used as is to build the contact self energies and the extended
device Green function. The definition of an eigensolver is not meaningful in an open boundary
setup, as the system is instead solved by the Green function technique. Therefore we just use a
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keyword TransportOnly to indicate that we do not want to solve an Eigenvalue problem. The
other fields are filled up in the same way as for a regular DFTB+ calculation.

In general, in DFTB+ an Solver is regarded as a calculator which can provide charge density in
the SCC cycle, therefore we will define a Green function based eigensolver later, but only for
SCC calculations.

Note that as C-H bonds are present in the system, charge transfer should occur, hence the result
will not be accurate at the non-SCC level. It is not a-priori trivial to predict whether this affects
qualitatively or quantitatively the transmission. We will therefore later compare these results
with an SCC calculation - at the moment we will stay at the level of a non-SCC calculation,
because it is faster to execute and also allows us to use the simplest input file possible.

Finally, the implementation of the Landauer-Caroli formula is regarded as a post-processing
operation and specified by the block TransmissionAndDos inside Analysis:

Analysis = {
TransmissionAndDos {

Verbosity = 101
EnergyRange [eV] = -6.5 -3.0
EnergyStep [eV] = 0.01
Region = {

Atoms = 1:136
}

}
}

TransmissionAndDos allows for the calculation of transmission coefficient, Local Density of States
(LDOS) and current. A transmission is always calculated using the energy interval and energy
step specified here. The LDOS is only calculated when sub-blocks Region are defined. Region
can be used to select some specific subsets of atoms or orbitals, according to the syntax explained
in the manual. In this example, we are specifying the whole extended device region (atoms 1 to
136). Note that the energy range of interest is not known a priori. Either you have a reference
band structure calculation, therefore you know where the first sub-bands are (this is the correct
way to do this), or you can run a quick calculation with a large energy step and on the basis of
the transmission curve then refine the range of interest.

Now that the input file is complete, we have to complete one last step. During a transport run,
DFTB+ will look for two directories named GS and contacts. We have to create these directories
in advance:

mkdir GS
mkdir contacts

We can then start the calculation:

dftb+ dftb_in.hsd | tee output

We can take advantage of parallelisation over the energy points in the calculation by running the
code with mpirun:

mpirun -n 4 dftb+ dftb_in.hsd | tee output

where 4 should be substituted by the number of available nodes. Note that Green function
method is parallelised over energy points, therefore a number of nodes larger than the energy grid
will not improve performances and secondly that the memory consumption is proportional to the
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number of nodes used - this may be critical in shared memory systems with a small amount of
memory per node.

When the calculation has finished, the transmission and density of states are saved to both the
detailed.out file and to two separate transmission.dat and localDOS.dat files. These additional
files both contain the energy points in the first column and the desired quantities as additional
columns.

We can plot the transmission by using the plotxy script:

plotxy --xlabel 'Energy [eV]' --ylabel 'Transmission' -L transmission.dat &

The plot is shown in Figure Non-SCC transmission through a pristine AGR (page 40):

Fig. 4.4: Non-SCC transmission through a pristine AGR

The ribbon is semiconducting, therefore we can see a zero transmission at energies corresponding
to the band gap. As the system is ideal, outside of the band gap we can observe the characteristic
conductance steps where the value of the transmission is 1.0 for every band which crosses a given
energy. This is a normal signature of ideal 1D systems with translational invariance.

Similarly, we can visualise the density of states by typing (the x and y axis limits are chosen to
focus on the first few sub-bands):

plotxy --xlabel 'Energy [eV]' --ylabel 'DOS [arbitrary units]' -L \
--xlimits -6.5 -3 --ylimit 0 1000 localDOS.dat &

The result is shown in Figure Non-SCC density of states for a pristine AGR (page 41):

You can plot the transmission or the density of states on a semi-logarithmic scale:

plotxy --xlabel 'Energy [eV]' --ylabel 'DOS [arbitrary units]' -L \
--xlimits -6.5 -3 --logscale y localDOS.dat &

If you do so, you will obtain the plot shown in Figure Non-SCC density of states on logarithmic
scale (page 41).
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Fig. 4.5: Non-SCC density of states for a pristine AGR

Fig. 4.6: Non-SCC density of states on logarithmic scale
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The density of states in the band-gap is not zero, but decreases by several orders of magnitude.
This is a natural consequence of the quasi-particle nature of the Green function formalism: every
state in the system has a finite broadening in energy.

4.2 Non-SCC armchair nanoribbon with vacancy (A)

[Working directory: transport/agr_nonscc/vacancy1/ ]

4.2.1 Transmission and Density of States

Now that we have a calculation of the reference pristine system, we will introduce a scattering
centre by producing a vacancy in the system. In order to do so, we directly modify the structure
file device_7.gen and the input file dftb_in.hsd. We remove atom number 48 from the structure
file. Note that DFTB+ ignores the indexes in the first column of the .gen file, therefore we do not
need to adjust them. We have, however, to remember to change the total number of atoms in
the first line from 408 to 407:

407 C
C H
1 1 37.831463060000 -20.000000000000 0.710000000000
2 1 39.061219140000 -20.000000000000 1.420000000000
3 1 39.061219140000 -20.000000000000 2.840000000000
.....
46 1 32.912438770000 -20.000000000000 7.810000000000
47 1 30.452926620000 -20.000000000000 4.970000000000
49 1 31.682682700000 -20.000000000000 7.100000000000
50 1 30.452926620000 -20.000000000000 7.810000000000
...

The resulting structure should look like this:

Fig. 4.7: Geometry with vacancy on sublattice A

We then also adjust the dftb_in.hsd file accordingly. As we have removed an atom, all the indexes
in the transport block need to be adjusted properly. Note that we removed an atom in the first
PL of the extended device, therefore we also need to adjust the values of FirstLayerAtoms. The
Transport block now reads:

Transport {
Device {

AtomRange = 1 135
FirstLayerAtoms = 1 68
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}
Contact {

Id = "source"
AtomRange = 136 271
FermiLevel [eV] = -4.7103
potential [eV] = 0.0

}
Contact {

Id = "drain"
AtomRange = 272 407
FermiLevel [eV] = -4.7103
potential [eV] = 0.0

}
}

Compared to the pristine system, we have modified AtomRange in all the blocks and the values
of FirstLayerAtoms.

After running the calculation, we can compare the transmission curve for this structure with a
single vacancy and the pristine ribbon by using plotxy:

plotxy --xlabel 'Energy [eV]' --ylabel 'Transmission' -L --xlimits -6.5 -3 \
../ideal/transmission.dat transmission.dat &

Fig. 4.8: Non-SCC transmission in pristine (blue) and single vacancy (red) ribbons

Clearly, the presence of a vacancy introduces some finite scattering which reduce the transmission
with respect to the ideal ribbon. In particular, the effect is quite small in the first conductance
band while it is more visible in the first valence band and in higher bands. The reflection
amplitude is increased near the band edges. This is expected in 1D systems, as near the band
edges the density of states diverges (Van Hove singularities), hence the group velocity is lower,
and it is known from semi-classical transport theory that the scattering probability is, when short
range disorder is present, inversely proportional to the group velocity. The absence of resonant
features in the transmission may point to the fact that the vacancy does not induce additional
states in the conduction or valence bands. This can be verified by visualising the density of
states, as in Figure Non-SCC DOS for single vacancy in sublattice A (linear scale) (page 44).
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Fig. 4.9: Non-SCC DOS for single vacancy in sublattice A (linear scale)

The same density of states can be visualised on logarithmic scale as well, as in Figure Non-SCC
DOS for single vacancy on sublattice A (semilog scale) (page 44).

Fig. 4.10: Non-SCC DOS for single vacancy on sublattice A (semilog scale)

The vacancy is adding some close energy levels in the gap, as verified already from the DFTB
calculation in the first part of the tutorial. The Van Hove singularities are partially suppressed
as the system no longer possesses translational symmetry along the transport direction. Even in
a simple non-SCC approximation, the qualitative picture is consistent with the previous SCC
periodic calculation. We will now consider a vacancy sitting on the other sublattice (B) and try
to understand whether the relative position of the vacancy is relevant or not by calculating once
more the non-SCC transmission and density of states
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4.3 Non-SCC armchair nanoribbon with vacancy (B)

[Working directory: transport/agr_nonscc/vacancy2/ ]

4.3.1 Transmission and Density of States

We will now consider a vacancy sitting on the other sublattice (B), i.e. we can take the structure
file we used for the ideal ribbon and delete the atom number 47. The structure file is:

407 C
C H
1 1 37.831463060000 -20.000000000000 0.710000000000
2 1 39.061219140000 -20.000000000000 1.420000000000
3 1 39.061219140000 -20.000000000000 2.840000000000
.....
46 1 32.912438770000 -20.000000000000 7.810000000000
48 1 31.682682700000 -20.000000000000 5.680000000000
49 1 31.682682700000 -20.000000000000 7.100000000000
50 1 30.452926620000 -20.000000000000 7.810000000000
.....

The jmol rendering of the geometry:

Fig. 4.11: Geometry with vacancy on sublattice B

Also in this case we remove an atom from the first PL of the extended device region, therefore the
rest of the dftb_in.hsd input file is identical to the one we used for the vacancy on sublattice A.
We can therefore just copy it and run the dftb calculation. The transmission is shown in Figure
Non-SCC transmission for vacancy B (green), pristine (blue) and vacancy A (red) (page 46)
(Transmission for vacancy on sublattice B in blue, transmission for vacancy on sublattice A in
green and pristine system in green):

We can see a very strong suppression of transmission in the first sub-bands, especially in the first
valence band. Again, the absence of resonances may be due by gap states. In fact, we can verify
it by plotting the density of states, as shown in Figure Non-SCC DOS for vacancy in sublattice
B (semilog scale) (page 46).

We can clearly see that the vacancy induces some nearly degenerate gap states, and that the
density of states at higher energies is largely unaffected. It is known that the relative position
of a scattering centre in a graphene nanoribbon with respect to different sub-lattices strongly
affects its scattering properties, as is shown in these non-SCC calculation. Qualitatively, the
picture is also consistent with periodic calculations, with the difference that we obtain directly
information on the effect on transport properties via transmission function. This also ensures
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Fig. 4.12: Non-SCC transmission for vacancy B (green), pristine (blue) and vacancy A (red)

that we do not have to worry about choosing the right supercell or k-point sampling as the open
boundary conditions represent exactly the infinite system with a single scattering centre. As
already pointed out earlier, there is no warranty that a non-SCC calculation give the proper
result in a system if relevant charge transfer is occurring, and in general it will not. Therefore in
the next section we will repeat the same calculation by solving the SCC problem.

Fig. 4.13: Non-SCC DOS for single vacancy on sublattice B (semilog scale)
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4.4 SCC Pristine armchair nanoribbon

A DFTB Hamiltonian is in general given by two terms:

𝐻𝑆𝐶𝐶 = 𝐻0 +𝐻𝑠ℎ𝑖𝑓𝑡

Where the component 𝐻𝑠ℎ𝑖𝑓𝑡 is the self-consistent (SCC) correction. The SCC correction is in
general needed whenever there is a finite charge transfer between atoms, i.e. whenever there are
bonds between atoms with different chemical species or with different coordination numbers. In
our case, we can expect a finite charge transfer between the C and H atoms at the edges, and an
SCC component may be relevant. While in the previous sections, we have only considered the
non-SCC component 𝐻0, in the next sections we will compute the same calculation by including
the correction given by the shifts 𝐻𝑠ℎ𝑖𝑓𝑡𝑠.

Note that the equilibrium SCC problem can be tackled in two ways: we could apply the Landauer-
Caroli to an SCC Hamiltonian taken, for example, from a periodic calculation (i.e. uploading
the SCC component), or we can solve the problem as a full NEGF setup with 0 bias. The code
flow is currently such that this second procedure has to be used (however, the first technique will
be available in future release). Therefore we will need to learn to set the input related to two
other components of the NEGF machinery: the real space Poisson solver and the Green function
density matrix.

In this way we will introduce a first complete input file. It is important, from a didactic point of
view, to be clear that as long as the applied bias is zero and we are interested in equilibrium
properties, the two approaches are equivalent and the results are only valid in the limit of linear
response.

4.4.1 Contact calculation

[Working directory: transport/agr_scc/contacts/ ]

In order to run an SCC transport calculation, the code needs some additional knowledge about
the contact PLs. In particular, the SCC shifts and Mulliken charges have to be saved somewhere
to enable consistency between the calculation of the self-energy and the calculation of the Poisson
potential. To this end, we have to introduce an additional step in the procedure: the contact
calculation.

The contact calculation is simply a DFTB periodic calculation for the contact PL. As such, not
all the field defined in the transport are meaningful and the input file will of course look different.
The Geometry block is identical:

Geometry = GenFormat {
<<< 'device_7.gen'
}

While the Transport block needs to be modified as follows:

Transport {
Device {

AtomRange = 1 136
}
Contact {

Id = "source"
AtomRange = 137 272

}
Contact {
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Id = "drain"
AtomRange = 273 408

}
Task = ContactHamiltonian{

ContactId = "source"
}

}

We first notice the addition of an option Task =ContactHamiltonian{...}, which was previously
absent. This block specifies that we intend to calculate the bulk contact SCC properties, and
the field ContactId specifies which contact we want to calculate. The field FirstLayerAtoms in
the Device block is absent (it does not make sense in a contact calculation) and so are the fields
FermiLevel and Potential in the two Contact sections, as they are not meaningful during this
step. In general, the philosophy of a DFTB input file is that if input fields that would be useless
or contradictory are present, the code will halt with an error message.

The Hamiltonian block shows some differences, too:

Hamiltonian = DFTB {
SCC = Yes
SCCTolerance = 1e-6
EwaldParameter = 0.1
MaxAngularMomentum = {

C ="p"
H = "s"

}

SlaterKosterFiles = Type2FileNames {
Prefix = "../../../sk/"
Separator = "-"
Suffix = ".skf"

}

KpointsAndWeights = SupercellFolding{
25 0 0
0 1 0
0 0 1
0.0 0.0 0.0

}
}

The flags SCC=Yes and SCCTolerance=1e-6 enable the SCC calculation. A small tolerance in the
contact calculation, and in general in transport calculation, helps to avoid artificial mismatches
at device/contact boundaries. The parameter EwaldParameter needs to sometimes be set when
using parallel calculations to reduce the size of the neighbour list. Typically, the code may
complain about a too small parameter: in that case, setting a value of 0.1 is considered to be
good practice. The other parameters are the usual ones, except for the KPointsAndWeight, which
deserves special attention.

The bulk contact is of course a periodic structure, hence we need to specify a proper k-point
sampling, as we would do in a regular periodic DFTB calculation. However, you should be
careful about the way the lattice vector is internally defined. In the input system is a cluster
(C), i.e. it has no periodicity in direction transverse to the transport directions, the lattice vector
of the contact is internally reconstructed and assigned to be the first lattice vector, regardless
the spatial orientation of the structure. This means that the KPointsAndWeights for a cluster
system are always defined as above: a finite number of k-points along the first reciprocal vector
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(according to a 1D Monkhorst-Pack scheme) and a Gamma point sampling along the other two
directions. The reason for this choice is that we do not want to assign a specific direction to the
structures, i.e. at this level we do not assume in any way that the structure must be oriented
along x,y or z direction.

Note also that as the contact information is used in the transport calculation, it is a good idea
to use a dense k point sampling and a low SCC tolerance, in order to get a very well converged
solution. The contact calculation will be usually much faster than the transport calculation, so
this does not usually present a problem.

On the other hand, this rule regarding k-points does not apply to periodic transport calculations,
as the periodicity along the transverse directions must also be preserved (refer to the following
section for a periodic system example). We can run the calculation by typing:

dftb+ dftb_in.hsd |tee output

After running the calculation, we notice that a file shiftcont_source.dat is generated. This file
contains the information useful for the transport calculation (shifts and charges of a bulk contact).
It is suggested you also keep a copy of the detailed.out for later reference. We can obtain the
value of the Fermi energy, which we will later need, from detailed.out as -4.7103 eV.

We can now run the same calculation for the drain contact by just modifying the Task block:

Task = ContactHamiltonian{
ContactId = "drain"

}

The contact are identical, therefore we expect the same results, also with the same Fermi energy.
We now have a file shiftcont_drain.out, which is equivalent to shiftcont_drain.dat apart from
small numerical error. In fact, we could have simply copied the previous contact results into this
file.

Now that the contact calculation is available, we can set up the transport calculation.

4.4.2 Transmission and Density of States

[Working directory: transport/agr_scc/ideal/ ]

In order to calculate the transmission for the SCC system, we have to copy the files shift-
cont_drain.dat and shiftcont_source.dat into the current directory:

cp ../contacts/shiftcont* .

Then, we have to specify some additional blocks with respect to a non-SCC calculation. We first
look at the Transport block.:

Transport {
Device {

AtomRange = 1 136
FirstLayerAtoms = 1 69

}
Contact {

Id = "source"
AtomRange = 137 272
FermiLevel [eV] = -4.45
potential [eV] = 0.0

}
Contact {

49



TraNaS OpenSuite Guide, version 1.03 (release) January 18, 2020

Id = "drain"
AtomRange = 273 408
FermiLevel [eV] = -4.45
potential [eV] = 0.0

}
Task = UploadContacts {
}

}

The atom indices are of course the same, as the geometry of the system is not changed. This
time though, we explicitly specified a Task block named UploadContacts, which declares that we
are now running a full transport calculation. Task=UploadContacts{} is the default and does not
take any additional parameters, therefore you can safely omit it.

Now that we are solving the full SCC scheme, we will allow for charge transfer between the open
leads and the extended device region, therefore it is important to set a well-defined Fermi energy.
While this does not make any difference in a non-SCC transmission calculation, it is crucial
for the SCC calculation. A wrong or unphysical Fermi energy will lead to unphysical charge
accumulation or depletion in the system.

To this end, you will have to pay some attention to the definition of the Fermi energy. As
we are calculating a semiconductor system, the Fermi level should be in the energy gap. By
calculating a band structure or by inspection of the eigenvalues in the file detailed.out you can
verify that the value -4.7103 is on the edge of the conduction band. This can be explained as
numerically the Fermi level is defined by filling the single particle states till the reference density
is reached, therefore its position inside the gap of a semiconductor is arbitrary. Therefore, while
in metallic system we may ensure consistency and use a well calculated Fermi level at some
specific temperature during all our transport calculation, in the case of a semiconductor system
we can manually set the Fermi level in the middle of the energy gap (for this system, roughly
at -4.45 eV) and freely vary the temperature as long as the gap is larger than several times the
value of kT.

We will see in the following that there are some ways to verify that the Fermi level is defined
consistently, as this is often source of confusion. Note also that, differently from other codes, dftb+
allows for different Fermi levels in different contacts, which can be useful when heterogeneous
contacts are defined (for example, in a PN junction). In that case a built-in potential is internally
added to ensure no current flow at equilibrium.

In the Hamiltonian block now an SCC calculation has to be specified:

Hamiltonian = DFTB {
SCC = Yes
SCCTolerance = 1e-6
ReadInitialCharges = No
MaxAngularMomentum = {

C = "p"
H = "s"

}

SlaterKosterFiles = Type2FileNames {
Prefix = "../../../sk/"
Separator = "-"
Suffix = ".skf"
}
....
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MaxAngularMomentum and SlaterKosterFiles are not modified. But differently from the non-SCC
calculation, we now need to specify a way to solve the Hartree potential and the charge density
self-consistently. In a NEGF calculation, we use a real-space Poisson solver to calculate the
potential, and a Green function integration method to calculate the density matrix:
...
Electrostatics = Poisson {

Poissonbox [Angstrom] = 40.0 30.0 30.0
MinimalGrid [Angstrom] = 0.5 0.5 0.5
SavePotential = Yes

}

Solver = GreensFunction {
}

Mixer = Broyden {
MixingParameter = 0.02

}
}
...

The Poisson section contains the definition of the real space grid parameters. Note that differently
from a normal dftb+ calculation, simulating regions of vacuum is not for free, as the simulation
domain must be spanned by the real space grid. The grid is always oriented along the orthogonal
cartesian coordinate system. Poissonbox specifies the lateral length of the grid. The length
along the transport direction is ignored as it is automatically determined by the code (in this
case, z=30.0). The length along the transverse direction are relevant and should be carefully
set. In order not to force unphysical boundary conditions, you may extend the grid at least
1 nm away. If a strong charge transfer is present, you may go for a larger grid according to
your available computational resources. A poorly defined grid can lead to no convergence at all,
to a very strange (and slow) convergence path or to unphysical results. MinimalGrid specifies
the minimum step size for the multigrid algorithm. Values between 0.2 and 0.5 are usually
good, where a lower value stands for higher precision. SavePotential = Yes will return a file
containing the potential and charge density profile, for later reference. These files can be quite
large, therefore the default is No.

The Solver is now specified as GreensFunction. With this definition, we instruct the code not
to solve an eigenvalue problem but rather to calculate the density matrix by integration of the
Keldysh Green function. This block provides the SCC charge density with or without applied
bias. The options define the integration path. Usually the default options are good enough in
most cases and advanced users may refer to the manual and references therein.

The Mixer options is present in dftb calculations as well. Convergence is known to be critical in
NEGF schemes. In that case, a lower MixingParameter value will help to avoid strong oscillation
in the SCC iterations.

The last block is Analysis:
...
Analysis = {

TransmissionAndDos {
Verbosity = 101
EnergyRange [eV] = -6.0 -3.0
EnergyStep [eV] = 0.01

}
}

This block is identical to the non-scc calculation as the same task is performed: calculation of
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transmission, current and DOS by using the Landauer-Caroli formula. The transmission will
be of course be different due to the fact that the ground state charge density is now solution of
the SCC Hamiltonian and we have slightly changed the energy range as the SCC component
introduce a shift of the band-structure (try to compare the SCC and non-SCC transmission
results when you are done). We can now run the calculation (after defining the directories GS
and contacts):

mkdir GS
mkdir contacts
dftb+ dftb_in.hsd |tee output

or:

mpirun -n 4 dftb+ dftb_in.hsd |tee output

Where -n 4 should be adapted to the number of available nodes. As transport calculations
in dftb+ are parallelised on energy points, a quantity larger than 40 (the default number of
integration points at equilibrium) will not speed up the calculation of the density matrix.

An inspection of the file detailed.out reveals that we have additional information with respect to
the non-SCC calculation, including a list of atomic charges and orbital population, as now the
SCC density matrix has been calculated. The transmission is also saved as separate file, and is
shown in Figure SCC (red) and Non-SCC (blue) transmission through pristine AGR (page 52).

Fig. 4.14: SCC (red) and Non-SCC (blue) transmission through pristine AGR

As you’d expect, it still step-like as in the non-SCC calculation. This is correct, as we’re
calculating an ideal 1D system. The bandwidth (i.e., the steps width) may differ due to SCC
contribution and the overall transmission is shifted. Note that while the non-SCC calculation is
very robust, meaning that you will always get step-like transmission for a 1D system, in the SCC
calculation a poor definition of the boundary conditions, of the bulk contact properties or of the
additional GreensFunction and Poisson blocks may induce numerical artifacts and scattering
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barriers which should not be there. As a result, the transmission will not appear step-like but
rather visibly smoothed out.

You can also verify the quality of the calculation by inspection of the potential and charge
density profiles. In a pristine periodic system we would expect a periodic potential, without
discontinuities at the boundary between extended device and electrodes. The information needed
to construct the real space potential and charge density are contained in 5 files: box3d.dat,
Xvector.dat, Yvector,dat, Zvector.dat, potential.dat and charge_density.dat. The first 4 files
contain the grid information, and the last two ones the list of potential and charge density values
(following a row major order). Those information can be converted to any useful with some
simple scripting, we provide an utility called makecube which can be used to convert them to
Gaussian cube format or a more flexible vtk format. There’s plenty of software to visualise vtk or
cube files, but unluckily at present current choices of software which are effective at visualising
real space grid data are weak at visualising atomistic structures, and vice versa. In the following
we will use paraview and work with the vtk format. Paraview is freely available and is supplied
with many gnu/linux distributions as a compiled package.

The vtk file can be obtained by simply running:

makecube potential.dat pot.vtk

Fig. 4.15: Potential profile along the nanoribbon

An extensive explanation of paraview features is beyond the scope of this tutorial. Following
some easy steps, you can produce the potential map shown in Figure Potential profile along the
nanoribbon (page 53).

1. Open paraview and import the file pot.vtk from File->Open

2. Click on Properties -> Apply (Properties are usually visualised on the left side of the
screen) and you should see the bounding box in the visualisation windows.

3. In the Pipeline browser select the file pot.vtk by clicking once on it, and then select the
Clip filter from Filters -> Alphabetical (or from the filter toolbar).

4. In Properties, click on ‘Y Normal’ to produce a clip along the nanoribbon.

5. Click on Properties -> Apply.

The plot shown in Figure Potential profile along the nanoribbon (page 53) above is the self-
consistent potential along the nanoribbon. We can see that the charge transfer between carbon
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and hydrogen at the edges results in a non-flat potential. At a first glance, the potential looks
quite homogeneous, meaning that there are no clear discontinuities at the box boundary. This is
important: being it a homogeneous ribbon, the potential should have the same periodicity as the
lattice. We can verify this with a closer inspection by plotting a cut along a line. We apply the
following steps:

1. We select pot.vtk in the Pipeline Browser and Filters->Alphabetical->Plot Over Line

2. From the Properties window, we select ‘Z Axis’ and click on ‘Apply’

By following this procedure we obtain Figure Potential profile along the nanoribbon (page 54).

Fig. 4.16: Potential profile along the nanoribbon

As you can notice, there is a discontinuity at the interface. However, it is quite small (∼ 12 meV).
Defining a ‘perfect’ interface between the bulk semi-infinite contacts and the device region is
very difficult, especially in a semiconductor where no free charge can contribute to screen such
an interface potential. A smaller tolerance in the self-consistent charge during the contact and
the device calculation, a finer calculation of the Fermi level (in metallic systems) and a finer
Poisson grid can decrease the discontinuity: you should be able to reach about 1 meV, but it is
difficult to go below this value. However, as you can see in the transmission plot, as long as the
discontinuity is this small, it hardly affects the transmission.

However, it is important for you to verify that the behaviour at the boundaries is reasonable.
Otherwise, the extended region may be too small to allow to the relevant physical quantities
(charge, potential) to relax to bulk values. Be aware that numerical errors are unavoidable,
therefore it is important to understand their relevance and the impact on the results. In the
transmission calculation we do not notice anything different because the energy step is close to
the mismatch at the boundaries.

After running the calculation for the pristine system, we will introduce vacancies as we did in
the non-SCC calculation. The results should be now directly comparable to the bulk periodic
SCC dftb calculation.

4.5 SCC armchair nanoribbon with vacancy (A)

[Working directory: transport/agr_scc/vacancy1/ ]

We will now calculate the SCC transmission for the nanoribbon with a vacancy on the sublattice
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A, using the same input structure set up for the non-SCC calculation. The contacts are identical
to the pristine case, therefore in the following we will only modify the extended device calculation.

4.5.1 Transmission and Density of States

As previously done, the transport section must be modified in order to account for the different
number of atoms in the extended device region:

Transport {
Device {

AtomRange = 1 135
FirstLayerAtoms = 1 68

}
Contact {

Id = "source"
AtomRange = 136 271
FermiLevel [eV] = -4.45
potential [eV] = 0.0

}
Contact {

Id = "drain"
AtomRange = 272 407
FermiLevel [eV] = -4.45
potential [eV] = 0.0

}
Task = UploadContacts {
}

}

We use the same Fermi level and the files shiftcont_source.dat and shiftcont_drain.dat as in the
pristine system calculation, as the contacts are not modified.

The Hamiltonian block is also not modified, except for an additional finite temperature:

Hamiltonian = DFTB {
SCC = Yes
SCCTolerance = 1e-6
ReadInitialCharges = No
MaxAngularMomentum = {

C = "p"
H = "s"

}
SlaterKosterFiles = Type2FileNames {
Prefix = "../../../sk/"
Separator = "-"
Suffix = ".skf"
}
Filling = Fermi {

Temperature [Kelvin] = 150.0
}
Electrostatics = Poisson {

Poissonbox [Angstrom] = 40.0 40.0 30.0
MinimalGrid [Angstrom] = 0.5 0.5 0.5
SavePotential = Yes

}
Solver = GreensFunction {

}
}
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A finite temperature is used to provide a finite temperature broadening, useful if the vacancy
induces partially filled gap states. In general, temperature broadening may improve convergence
and dump oscillations in the SCC iterations.

The Analysis block is also similar, we add the DOS calculation to verify if we can identify a
vacancy state:

Analysis = {
TransmissionAndDos {

Verbosity = 101
EnergyRange [eV] = -6.0 -3.0
EnergyStep [eV] = 0.025
Region = {

Atoms = 1:135
}

}
}

As usual, you can now create the GS and contacts directories, copy the shiftcont_source.dat and
shiftcont_drain.dat in the current directory and run the calculation. The density of states and
transmission are shown in Figure SCC DOS for single vacancy on sublattice A (semilog scale)
(page 56) and SCC transmission in pristine (blue) and single vacancy (red) ribbons (page 57).

Fig. 4.17: SCC DOS for single vacancy on sublattice A (semilog scale)

The vacancy states are located in the energy gap, consistently with the periodic calculation, and
that the transmission curve is qualitative similar to the non-scc calculation. The first conduction
and valence band are weakly affected by the vacancy which does not act as a strong scatterer.
There is no signature of resonances, as the additional levels are located in the gap.

Note also that we previously recommended the use of large extended regions and to verify that
the potential and charge density are smooth at interfaces. As you can see in Figure Potential
profile for vacancy (A) (page 57), the impurity is very close to the boundaries, resulting to a
potential profile which varies significantly close in to the boundary. It is left to the reader to
verify that the overall transmission does not change significantly if a longer extended region is
considered.
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Fig. 4.18: SCC transmission in pristine (blue) and single vacancy (red) ribbons

Fig. 4.19: Potential profile for vacancy (A)
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4.6 SCC armchair nanoribbon with vacancy (B)

[Working directory: transport/agr_scc/vacancy2/ ]

We will now run the same calculation, but with the vacancy on the sublattice B. As in the
non-SCC case, the only difference with the previous calculation is the location of the vacancy,
therefore the input file is absolutely identical. The contacts are the same, therefore all we have
to do is copy the shiftcont_source.dat and shiftcont_drain.dat files into the current directory
and run the calculation.

The resulting transmission and density of states are shown in Figures SCC DOS for single vacancy
on sublattice B (semilog scale) (page 58) and SCC transmission for single vacancy on sublattice
B (page 59).

Fig. 4.20: SCC DOS for single vacancy on sublattice B (semilog scale)

We immediately notice that the Van Hove singularities are strongly suppressed and that the
valence band is almost completely suppressed. Consistently with the picture obtained by periodic
calculation, a quasi-bounded vacancy level hybridise with the valence band edge causing a strong
back-scattering. A comparison between all the three cases (see Figure SCC transmission for
vacancy B (green), pristine (blue) and vacancy A (red) (page 59)) shows that the scattering
probability is deeply affected by the exact position of the vacancy. This is, in graphene nanoribbon,
generally true for other kinds of short range scattering centres such as substitutional impurities.
We can also notice that, in this particular case, the non-scc approximation is qualitatively
consistent for two reasons: the vacancy level are not populated and the charge transfer at the
edges is not critical as the edges contribute poorly to the transmission in an armchair ribbon.
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Fig. 4.21: SCC transmission for single vacancy on sublattice B

Fig. 4.22: SCC transmission for vacancy B (green), pristine (blue) and vacancy A (red)
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Part III

Examples1

1This part is under development and will appear in next versions.
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Part IV

Developer guide2

2This part is under development and will appear in next versions.
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Part V

Appendices
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License

This TraNas OpenSuite Guide is licensed under the Creative Common Attribution 4.0 International
license.

You are free to:

• Share – copy and redistribute the material in any medium or format

• Adapt – remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way
that suggests the licensor endorses you or your use.

No additional restrictions – You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.
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